Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 4(15): 2570-2577, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263280

RESUMO

The development of inherently conducting polymers as controllable/programmable drug delivery systems has attracted significant interest in medical bionics, and the interfacial properties of the polymers, in particular, protein adsorption characteristics, is integral to the stability of the overall performance. Herein we report a hybrid conducting system based on polypyrrole doped with an anti-inflammatory prodrug, dexamethasone phosphate (DexP), upon which post-surface modification was conducted to render the polymer more biostable. We firstly investigated the influence of the current density and DexP concentration on the physiochemical properties and surface characteristics of the resulting polymer films. Films were then surface modified with thiolated poly(ethylene glycol). The influence of surface modification on inhibition of nonspecific protein adsorption to the polymer surfaces was evaluated using electrochemistry and quartz crystal microbalance. Furthermore, studies were undertaken to examine the effect of surface coatings on the drug release behaviour triggered by electrical stimulation. Our results demonstrated that both the physiochemical and interfacial properties of conducting polymers can be modulated to enhance the performance of the materials as biocompatible drug delivery systems. This provides important insight into molecular engineering of conducting polymers to facilitate their applications in medical bionics.

2.
Nanotechnology ; 24(50): 505301, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24270681

RESUMO

The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).

3.
J Neural Eng ; 10(1): 016008, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23283383

RESUMO

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.


Assuntos
Regeneração Nervosa/fisiologia , Próteses Neurais , Doenças do Sistema Nervoso Periférico/cirurgia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Movimento Celular/fisiologia , Ácido Láctico , Masculino , Células PC12 , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia
4.
Nanoscale ; 4(15): 4327-47, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22695635

RESUMO

The nexus of any bionic device can be found at the electrode-cellular interface. Overall efficiency is determined by our ability to transfer electronic information across that interface. The nanostructure imparted to electrodes plays a critical role in controlling the cascade of events that determines the composition and structure of that interface. With commonly used conductors: metals, carbon and organic conducting polymers, a number of approaches that promote control over structure in the nanodomain have emerged in recent years with subsequent studies revealing a critical dependency between nanostructure and cellular behaviour. As we continue to develop our understanding of how to create and characterise electromaterials in the nanodomain, this is expected to have a profound effect on the development of next generation bionic devices. In this review, we focus on advances in fabricating nanostructured electrodes that present new opportunities in the field of medical bionics. We also briefly evaluate the interactions of living cells with the nanostructured electromaterials, in addition to highlighting emerging tools used for nanofabrication and nanocharacterisation of the electrode-cellular interface.


Assuntos
Biônica/instrumentação , Nanotecnologia/instrumentação , Carbono/química , Implante Coclear/instrumentação , Eletrodos , Metais/química , Microscopia de Força Atômica , Nanoestruturas/química , Polímeros/química
5.
J Biomed Mater Res A ; 95(1): 256-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20597125

RESUMO

Conducting polymers provide suitable substrates for the in vitro study of excitable cells, including skeletal muscle cells, due to their inherent conductivity and electroactivity. The thiophene family of conducting polymers offers unique flexibility for tailoring of polymer properties as a result of the ease of functionalization of the parent monomer. This article describes the preparation of films and electrospun fibers from an ester-functionalized organic solvent-soluble polythiophene (poly-octanoic acid 2-thiophen-3-yl-ethyl ester) and details the changes in properties that result from post-polymerization hydrolysis of the ester linkage. The polymer films supported the proliferation and differentiation of both primary and transformed skeletal muscle myoblasts. In addition, aligned electrospun fibers formed from the polymers provided scaffolds for the guided differentiation of linearly aligned primary myotubes, suggesting their suitability as three-dimensional substrates for the in vitro engineering of skeletal muscle tissue.


Assuntos
Condutividade Elétrica , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Polímeros/farmacologia , Tiofenos/farmacologia , Alicerces Teciduais/química , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Fluoresceínas/metabolismo , Masculino , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície/efeitos dos fármacos , Tiofenos/síntese química , Tiofenos/química
7.
J Colloid Interface Sci ; 261(2): 312-9, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256536

RESUMO

The adsorption of two model proteins, human serum albumin and immunoglobulin G, on a gold electrode surface was investigated using 125I radiolabeling and cyclic voltammetry (CV). 125I radiolabeling was used to determine the extent of protein adsorption, while CV was used to ascertain the effect of the adsorbed protein layer on the electron transfer between the gold electrode and an electroactive moiety in solution, namely, K3Fe(CN)6. The adsorbed amounts of HSA and IgG agreed well with previous results and showed approximately monolayer coverage. The amount of adsorbed protein increased when a positive potential (700 mV) was applied to the electrode, while the application of a negative potential (-800 mV) resulted in a decrease. When the solution pH was varied to alter the charge on the protein, the adsorption trends appeared to follow electrostatic interaction, namely, greater adsorption when the electrode and the protein possessed opposite charge and vice versa. The adsorbed protein layer had the effect of blocking the electron transfer. It was possible to correlate the degree of electron blocking with the amount of adsorbed protein to show that the greater the adsorption, the larger the blocking effect. Of the two proteins used, HSA proved to be more efficient at blocking the electron transfer.


Assuntos
Eletroquímica , Ouro , Proteínas/química , Proteínas/farmacocinética , Adsorção , Eletrodos , Concentração de Íons de Hidrogênio , Radioisótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...