Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 367(20)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152083

RESUMO

Erwinia amylovora is the causal agent of fire blight, an economically important disease of apples and pears. As part of the infection process, Er. amylovora propagates on different plant tissues each with distinct nutrient environments. Here, the biochemical properties of the Er. amylovora adenine permease (EaAdeP) are investigated. Heterologous expression of EaAdeP in nucleobase transporter-deficient Escherichia coli strains, coupled with radiolabel uptake studies, revealed that EaAdeP is a high affinity adenine transporter with a Km of 0.43 ± 0.09 µM. Both Es. coli and Er. amylovora carrying extra copies of EaAdeP are sensitive to growth on the toxic analog 8-azaadenine. EaAdeP is expressed during immature pear fruit infection. Immature pear and apple fruit virulence assays reveal that an E. amylovora ΔadeP::Camr mutant is still able to cause disease symptoms, however, with growth at a lower level, indicating that external adenine is utilized in disease establishment.


Assuntos
Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Genes Bacterianos/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Pyrus/microbiologia , Erwinia amylovora/patogenicidade
2.
Microb Pathog ; 147: 104363, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32615243

RESUMO

Erwinia amylovora is the causal agent of fire blight, a devastating disease of apples and pears. A previous study revealed that an E. amylovora uracil auxotroph was still virulent and can cause disease, suggesting that uracil can be obtained from the host environment. The E. amylovora genome contains a locus encoding for a uracil transporter belonging to the nucleobase cation symporter 2 family, displaying a high level of amino acid sequence similarity to the Escherichia coli UraA. Expression of E. amylovora UraA in nucleobase transporter-deficient E. coli strains, coupled with radiolabeled uptake studies reveal that E. amylovora UraA is a high affinity uracil transporter with a Km of 0.57 µM. Both E. coli and E. amylovora carrying extra copies of E. amylovora UraA are sensitive to growth on the toxic analog 5-fluorouracil. An E. amylovora ΔuraA::Camr mutant is still able to grow and cause disease symptoms on immature pears and apples.


Assuntos
Erwinia amylovora , Erwinia , Proteínas de Escherichia coli , Malus , Pyrus , Erwinia amylovora/genética , Escherichia coli , Frutas , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas , Uracila , Virulência/genética
3.
FEBS Open Bio ; 8(8): 1322-1331, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30087835

RESUMO

Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 µm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter.

4.
Microb Pathog ; 124: 305-310, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30157454

RESUMO

The genome of the Honeybee bacterial pathogen, Paenibacillus larvae, encodes for protein a with substantial amino acid sequence similarity to the canonical Escherichia coli uracil transporter UraA. P. larvae expresses the uracil permease (PlUP) locus, and is sensitive to the presence of the toxic uracil analog 5-fluorouracil under vegetative growth conditions. The solute transport and binding profile of PlUP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUP is specific for the transport of uracil and competitively binds xanthine and uric acid. Further biochemical characterization reveals that PlUP has a strong affinity for uracil with a Km 19.5 ±â€¯1.6 µM. Uracil transport is diminished in the presence of the proton disruptor carbonyl cyanide m-chlorophenylhydrazone, but not by the sodium gradient disruptor Ouabain.


Assuntos
Proteínas de Bactérias/metabolismo , Abelhas/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Paenibacillus larvae/metabolismo , Uracila/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Paenibacillus larvae/química , Paenibacillus larvae/genética , Especificidade por Substrato , Uracila/química , Ácido Úrico/química , Ácido Úrico/metabolismo , Xantina/química , Xantina/metabolismo
5.
FEMS Microbiol Lett ; 365(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385571

RESUMO

Two nucleobase transporters encoded in the genome of the Honey bee bacterial pathogen Paenibacillus larvae belong to the azaguanine-like transporters and are referred to as PlAzg1 and PlAzg2. PlAzg1 and 2 display significant amino acid sequence similarity, and share predicted secondary structures and functional sequence motifs with two Escherichia coli nucleobase cation symporter 2 (NCS2) members: adenine permease (EcAdeP) and guanine-hypoxanthine permease EcGhxP. However, similarity does not define function. Heterologous complementation and functional analysis using nucleobase transporter-deficient Saccharomyces cerevisiae strains revealed that PlAzg1 transports adenine, hypoxanthine, xanthine and uracil, while PlAzg2 transports adenine, guanine, hypoxanthine, xanthine, cytosine and uracil. Both PlAzg1 and 2 display high affinity for adenine with Km of 2.95 ± 0.22 and 1.92 ± 0.22 µM, respectively. These broad nucleobase transport profiles are in stark contrast to the narrow transport range observed for EcAdeP (adenine) and EcGhxP (guanine and hypoxanthine). PlAzg1 and 2 are similar to eukaryotic Azg-like transporters in that they share a broad solute transport profile, particularly the fungal Aspergillus nidulans AzgA (that transports adenine, guanine and hypoxanthine) and plant AzgA transporters from Arabidopsis thaliana and Zea mays (that collectively move adenine, guanine, hypoxanthine, xanthine, cytosine and uracil).


Assuntos
Proteínas de Bactérias/metabolismo , Abelhas/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Paenibacillus larvae/metabolismo , Adenina/metabolismo , Sequência de Aminoácidos , Animais , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Guanina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Paenibacillus larvae/química , Paenibacillus larvae/genética , Alinhamento de Sequência , Especificidade por Substrato , Uracila/metabolismo , Xantina/metabolismo
6.
Plant Physiol Biochem ; 100: 12-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773540

RESUMO

As part of an evolution-function analysis, two nucleobase cation symporter 1 (NCS1) from the moss Physcomitrella patens (PpNCS1A and PpNCS1B) are examined--the first such analysis of nucleobase transporters from early land plants. The solute specificity profiles for the moss NCS1 were determined through heterologous expression, growth and radiolabeled uptake experiments in NCS1-deficient Saccharomyces cerevisiae. Both PpNCS1A and 1B, share the same profiles as high affinity transporters of adenine and transport uracil, guanine, 8-azaguanine, 8-azaadenine, cytosine, 5-fluorocytosine, hypoxanthine, and xanthine. Despite sharing the same solute specificity profile, PpNCS1A and PpNCS1B move nucleobase compounds with different efficiencies. The broad nucleobase transport profile of PpNCS1A and 1B differs from the recently-characterized Viridiplantae NCS1 in breadth, revealing a flexibility in solute interactions with NCS1 across plant evolution.


Assuntos
Bryopsida , Proteínas de Transporte de Nucleobases , Proteínas de Plantas , Bryopsida/genética , Bryopsida/metabolismo , Teste de Complementação Genética , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Protoplasma ; 253(2): 611-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26022088

RESUMO

The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.


Assuntos
Adenina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cloroplastos/metabolismo , Genes de Plantas , Teste de Complementação Genética , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte Proteico , Saccharomyces cerevisiae , Setaria (Planta)/metabolismo , Especificidade por Substrato , Zea mays/metabolismo
8.
Plant Physiol Biochem ; 70: 52-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770594

RESUMO

The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Genes de Plantas , Nitrogênio/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Plantas/metabolismo , Purinas/metabolismo , Alantoína/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/genética , Evolução Molecular , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Nucleobases/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo
9.
FEBS Lett ; 586(9): 1370-8, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22616996

RESUMO

Locus At5g03555 encodes a nucleobase cation symporter 1 (AtNCS1) in the Arabidopsis genome. Arabidopsis insertion mutants, AtNcs1-1 and AtNcs1-3, were used for in planta toxic nucleobase analog growth studies and radio-labeled nucleobase uptake assays to characterize solute transport specificities. These results correlate with similar growth and uptake studies of AtNCS1 expressed in Saccharomyces cerevisiae. Both in planta and heterologous expression studies in yeast revealed a unique solute transport profile for AtNCS1 in moving adenine, guanine and uracil. This is in stark contrast to the canonical transport profiles determined for the well-characterized S. cerevisiae NCS1 proteins FUR4 (uracil transport) or FCY2 (adenine, guanine, and cytosine transport).


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Transporte Biológico , Loci Gênicos/genética , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas de Transporte de Nucleobases , Purinas/química , Purinas/toxicidade , Pirimidinas/química , Pirimidinas/toxicidade , Alinhamento de Sequência , Simportadores/química
10.
FEBS Lett ; 583(2): 481-6, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19121308

RESUMO

In plants, nucleobase biochemistry is highly compartmented relying upon a well-regulated and selective membrane transport system. In Arabidopsis two proteins, AtAzg1 and AtAzg2, show substantial amino acid sequence similarity to the adenine-guanine-hypoxanthine transporter AzgA of Aspergillus nidulans. Analysis of single and double mutant lines harboring T-DNA insertion alleles AtAzg1-1 and AtAzg2-1 reveal a marked resistance to growth in the presence of 8-azaadenine and 8-azaguanine but not to other toxic nucleobase analogues. Conversely, yeast strains expressing AtAzg1 and AtAzg2 gain heightened sensitivity to growth on 8-azaadenine and 8-azaguanine. Radio-labeled purine uptake experiments in yeast and in planta confirm the function of AtAzg1 and AtAzg2 as plant adenine-guanine transporters.


Assuntos
Adenina/metabolismo , Arabidopsis/metabolismo , Guanina/metabolismo , Proteínas de Transporte de Nucleobases/fisiologia , Adenina/análogos & derivados , Sequência de Aminoácidos , Arabidopsis/genética , Azaguanina/metabolismo , Transporte Biológico , Dados de Sequência Molecular , Proteínas de Transporte de Nucleobases/classificação , Proteínas de Transporte de Nucleobases/genética , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
J Exp Bot ; 57(14): 3563-73, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16968882

RESUMO

A fluoroorotic acid (FOA)-resistant mutant of Arabidopsis thaliana was isolated by screening M2 populations of ethyl methane sulphonate (EMS)-mutagenized Columbia seed. FOA resistance was due to a nuclear recessive gene, for1-1, which locates to a 519 kb region in chromosome 5. Assays of key regulatory enzymes in de novo pyrimidine synthesis (uridine monophosphate synthase) and salvage biochemistry (thymidine kinase) confirmed that FOA resistance in for1-1/for1-1 plants was not due to altered enzymatic activities. Uptake studies using radiolabelled purines, pyrimidines, and [14C]FOA reveal that for1-1/for1-1 plants were specifically defective in the uptake of uracil or uracil-like bases. To confirm such specificity, genetic crosses show that FOR1 is a distinct locus from FUR1 which encodes a deoxyuridine nucleoside transporter. In addition, for1-1/for1-1 plants were restored to FOA sensitivity by transformation with the Escherichia coli uracil transporter gene uraA driven by the cauliflower mosaic virus (CaMV) 35S promoter. Molecular mapping studies reveal that FOR1 does not correspond to loci belonging to any of the six known nucleobase transporter families identified in the Arabidopsis genome. Moreover, FOR1 does not appear to regulate the transcript levels of either uracil transporter-encoding loci At2g03590 or At2g03530. The above results strongly suggest that the for1-1 mutant allele affects a transport mechanism that is specific for the uptake of uracil.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Mutação , Ácido Orótico/análogos & derivados , Uracila/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Mapeamento Cromossômico , Cromossomos de Plantas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Ácido Orótico/farmacologia
12.
Plant Mol Biol ; 55(1): 121-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15604669

RESUMO

We fused four mutant omr1 alleles, encoding feedback-insensitive forms of Arabidopsis thaliana biosynthetic threonine dehydratase/deaminase (TD), to the CaMV 35S promoter and transformed these constructs into A. thaliana Columbia wild type plants. The mutant TD forms consisted of our previously isolated double mutant, omr1-1 , and three new site-directed mutants, omr1-5 , omr1-7 , and omr1-8 with single point mutations. We employed site-directed mutagenesis to assay the effects of amino acid substitutions in separate regulatory regions within the carboxy-terminal (C-term) allosteric end. TD assays and growth resistance to the isoleucine (Ile) toxic analog -O-methylthreonine (OMT) confirmed the desensitization to feedback inhibition and the viability of these mutant omr1 alleles as selectable markers, respectively. Two of the site-directed mutants, omr1-5 and omr1-7 , appeared to influence one of the two separate Ile-binding sites and had a notable 13-fold and 15-fold increase in free Ile, respectively. The omr1-8 appeared to influence the other Ile-binding site and resulted in a 2-fold increase in free Ile. The transgenic omr1-1 double mutant affecting both Ile-binding sites, however, displayed a 106-fold increase in free Ile revealing a profound synergistic interplay between these separate Ile-binding sites. While all of the four omr1 alleles conferred resistance to elevated concentrations of OMT, the progeny of omr1-1 initial transformants exhibited a bushy phenotype at the rosette stage. On the other hand, progeny of transformants omr1-5 , omr1-7 , and omr1-8 had a normal phenotype, undistinguishable from wild type. Therefore, alleles omr1-5 , omr1-7 , and omr1-8 , proved to be ideal as environmentally-friendly, dominant, selectable markers for plant transformation.


Assuntos
Arabidopsis/enzimologia , Treonina Desidratase/genética , Alelos , Sítio Alostérico/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Resistência a Medicamentos , Marcadores Genéticos/genética , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Isoleucina/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plantas Geneticamente Modificadas , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Treonina Desidratase/química , Treonina Desidratase/metabolismo , Transformação Genética
13.
J Exp Bot ; 53(379): 2453-4, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12432038

RESUMO

Isopropylmalate synthase (IPMS) is the first enzyme in the leucine biosynthetic pathway. It is the branch point in the biosynthesis of leucine and the other branched-chain amino acids. IPMS is also regulated by negative feedback inhibition by the end-product leucine. There are four highly homologous loci within the Arabidopsis thaliana genome, which contain sequences that code for IPMS. Through library screening and RT-PCR the expression patterns of three of these loci namely IMS1, IMS2, and IMS3 have been isolated and then characterized. cDNAs of IMS2 and IMS3 lacking the 5' chloroplast leader sequence were able to complement a leucine auxotroph of E. coli.


Assuntos
Arabidopsis/genética , Ligases/genética , Família Multigênica , Arabidopsis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...