Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Res J (Isfahan) ; 12(1): 89-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709681

RESUMO

BACKGROUND: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. MATERIALS AND METHODS: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. RESULTS: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). CONCLUSION: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants.

2.
Dent Res J (Isfahan) ; 9(5): 582-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23559923

RESUMO

BACKGROUND: Diabetes has become the next most widespread disease after cancer. Recent studies have found that diabetes and moderate to severe vitamin D deficiency are associated with reduced bone mineral content; therefore administration of vitamin D may correct these conditions. The purpose of this research is to compare the effect of vitamin D administration on bone to implant contact in diabetic rats with control group. MATERIALS AND METHODS: In this randomized placebo-controlled trial, 48 Wistar rats were rendered diabetic (130≤ blood sugar ≤200 mg/dl) by IV injection of 35 mg/kg Alloxan. Implants were inserted in tibial bone; Then rats were divided into study and control groups and received oral vitamin D3 (160 IU) or placebo respectively for one week. Bone to implant contact value was measured under light microscope at 3 and 6 weeks. RESULTS: Analysis of data indicated that vitamin D had no significant effect on bone to implant contact (BIC). At 3 weeks, the control group (n = 5) reported BIC level at 44 ± 19 and study group (n = 7) at 57 ± 20. At 6 weeks, the control group (n = 5) reported BIC level at 70 ± 29, and study group (n = 10) at 65 ± 22. Twenty one samples were missed because of death or incorrect lab processes. CONCLUSION: It seems that vitamin D supplement has no significant effect on BIC in 130 mg/dL ≤ blood sugar ≤200 mg/dL (P = 0.703) andwas also not time dependent (P = 0.074).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...