Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 816: 151654, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34785217

RESUMO

A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.


Assuntos
Poluição do Ar , Disruptores Endócrinos , Microbioma Gastrointestinal , Microbiota , Poluição do Ar/estatística & dados numéricos , Disbiose , Disruptores Endócrinos/toxicidade , Feminino , Humanos
2.
J Hazard Mater ; 405: 124256, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33129602

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a ubiquitous group of persistent chemicals distributed globally in the environment. Skin aging is a notorious process that is prematurely induced by the interaction between endogenous and exogenous factors, including exposure to environmental chemicals. The existing evidence suggests that skin absorption of PFASs through dermal contact may be an important route of exposure to these chemicals in humans. On the other hand, PFASs intake by other routes may lead to PFASs bioaccumulation in the skin via tissue bio-distribution. Additionally, the presence of PFASs in consumer and cosmetic products combined with their daily close contact with the skin could render humans readily susceptible to dermal absorption. Therefore, chronic low-dose dermal exposure to PFASs can occur in the human population, representing another important route of exposure to these chemicals. Studies indicate that PFASs can threaten skin health and contribute to premature skin aging. Initiation of inflammatory-oxidative cascades, induction of DNA damage such as telomere shortening, dysregulation of genes engaged in dermal barrier integrity and its functions, signaling of the mitogen activated protein kinase (MAPK) pathway, and last but not least the down-regulation of extracellular matrix (ECM) components are among the most likely mechanisms by which PFASs can contribute to premature skin aging.


Assuntos
Cosméticos , Fluorocarbonos , Envelhecimento da Pele , Bioacumulação , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Humanos , Pele
3.
Environ Int ; 122: 67-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509511

RESUMO

Beyond vitamin D (VD) effect on bone homeostasis, numerous physiological functions in human health have been described for this versatile prohormone. In 2016, 95% of the world's population lived in areas where annual mean ambient particulate matter (<2.5 µm) levels exceeded the World Health Organization guideline value (Shaddick et al., 2018). On the other hand, industries disperse thousands of chemicals continually into the environment. Further, considerable fraction of populations are exposed to tobacco smoke. All of these may disrupt biochemical pathways and cause detrimental consequences, such as VD deficiency (VDD). In spite of the remarkable number of studies conducted on the role of some of the above mentioned exposures on VDD, the literature suffers from two main shortcomings: (1) an overview of the impacts of environmental exposures on the levels of main VD metabolites, and (2) credible engaged mechanisms in VDD because of those exposures. To summarize explanations for these unclear topics, we conducted the present review, using relevant keywords in the PubMed database, to investigate the adverse effects of exposure to air pollution, some environmental chemicals, and smoking on the VD metabolism, and incorporate relevant potential pathways disrupting VD endocrine system (VDES) leading to VDD. Air pollution may lead to the reduction of VD cutaneous production either directly by blocking ultraviolet B photons or indirectly by decreasing outdoor activity. Heavy metals may reduce VD serum levels by increasing renal tubular dysfunction, as well as downregulating the transcription of cytochrome P450 mixed-function oxidases (CYPs). Endocrine-disrupting chemicals (EDCs) may inhibit the activity and expression of CYPs, and indirectly cause VDD through weight gain and dysregulation of thyroid hormone, parathyroid hormone, and calcium homeostasis. Smoking through several pathways decreases serum 25(OH)D and 1,25(OH)2D levels, VD intake from diet, and the cutaneous production of VD through skin aging. In summary, disturbance in the cutaneous production of cholecalciferol, decreased intestinal intake of VD, the modulation of genes involved in VD homeostasis, and decreased local production of calcitriol in target tissues are the most likely mechanisms that involve in decreasing the serum VD levels.


Assuntos
Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Fumar/efeitos adversos , Deficiência de Vitamina D/induzido quimicamente , Vitamina D/sangue , Exposição Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...