Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(2): 563-573, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749719

RESUMO

Scanning transmission ion microscopy imaging was performed whilst using a delay-line detector to record the impact position and arrival time of transmitted ions or neutrals. The incident helium ion beam had an energy of 20 keV and the arrival time measurements were used to calculate the energy loss after transmission through the sample. The 5D dataset thus produced (2D position in the sample plane, 2D position in the detector plane, and energy) is analyzed by collection into energy spectra or images. It is demonstrated that ion energy loss maps can identify regions of identical materials in the sample plane. The behavior of the energy loss with respect to the scattering angle is calculated and these simulations agree with the experimentally measured results. This experiment demonstrates the capability of keV helium ions to be successfully used in energy loss imaging experiments. This is the first step in the development of keV scanning transmission ion microscopy energy loss techniques.

2.
Microsc Microanal ; 29(Supplement_1): 530-531, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613216
3.
Ultramicroscopy ; 233: 113439, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915290

RESUMO

A newly developed microscope prototype, namely npSCOPE, consisting of a Gas Field Ion Source (GFIS) column and a position sensitive Delay-line Detector (DLD) was used to perform Scanning Transmission Ion Microscopy (STIM) using keV He+ ions. One experiment used 25 keV ions and a second experiment used 30 keV ions. STIM imaging of a 50 nm thick free-standing gold membrane exhibited excellent contrast due to ion channelling and revealed rich microstructural features including isolated nanoscale twin bands which matched well with the contrast in the conventional ion-induced Secondary Electron (SE) imaging mode. Transmission Kikuchi Diffraction (TKD) and Backscattered Electron (BSE) imaging were performed on the same areas to correlate and confirm the microstructural features observed in STIM. Monte Carlo simulations of the ion and electron trajectories were performed with parameters similar to the experimental conditions to derive insights related to beam broadening and its effect in the degradation of transmission image resolution. For the experimental conditions used, STIM imaging showed a lateral resolution close to30 nm. Dark twin bands in bright grains as well as bright twin bands in dark grains were observed in STIM. Some of the twin bands were invisible in STIM. For the specific experimental conditions used, the ion transmission efficiency across a particular twin band was found to decrease by a factor of 2.8. Surprisingly, some grains showed contrast reversal when the Field of View (FOV) was changed indicating the sensitivity of the channelling contrast to even small changes in illumination conditions. These observations are discussed using ion channelling conditions and crystallographic orientations of the grains and twin bands. This study demonstrates for the first time the potential of STIM imaging using keV He+ ions to quantitatively investigate channelling in nanoscale structures including isolated crystalline defects.

4.
Beilstein J Nanotechnol ; 11: 1854-1864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364144

RESUMO

A detection system based on a microchannel plate with a delay line readout structure has been developed to perform scanning transmission ion microscopy (STIM) in the helium ion microscope (HIM). This system is an improvement over other existing approaches since it combines the information of the scanning beam position on the sample with the position (scattering angle) and time of the transmission events. Various imaging modes, such as bright field and dark field or the direct image of the transmitted signal, can be created by post-processing the collected STIM data. Furthermore, the detector has high spatial and temporal resolution, is sensitive to both ions and neutral particles over a wide energy range, and shows robustness against ion beam-induced damage. A special in-vacuum movable support gives the possibility of moving the detector vertically, placing the detector closer to the sample for the detection of high-angle scattering events, or moving it down to increase the angular resolution and distance for time-of-flight measurements. With this new system, we show composition-dependent contrast for amorphous materials and the contrast difference between small-angle and high-angle scattering signals. We also detect channeling-related contrast on polycrystalline silicon, thallium chloride nanocrystals, and single-crystalline silicon by comparing the signal transmitted at different directions for the same data set.

5.
Beilstein J Nanotechnol ; 10: 1648-1657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467826

RESUMO

A dedicated transmission helium ion microscope (THIM) for sub-50 keV helium has been constructed to investigate ion scattering processes and contrast mechanisms, aiding the development of new imaging and analysis modalities. Unlike a commercial helium ion microscope (HIM), the in-house built instrument allows full flexibility in experimental configuration. Here, we report projection imaging and intensity patterns obtained from powder and bulk crystalline samples using stationary broad-beam as well as convergent-beam illumination conditions in THIM. The He+ ions formed unexpected spot patterns in the far field for MgO, BN and NaCl powder samples, but not for Au-coated MgO. The origin of the spot patterns in these samples was investigated. Surface diffraction of ions was excluded as a possible cause because the recorded scattering angles do not correspond to the predicted Bragg angles. Complementary secondary electron (SE) imaging in the HIM revealed that these samples charge significantly under He+ ion irradiation. The spot patterns obtained in the THIM experiments are explained as artefacts related to sample charging. The results presented here indicate that factors other than channeling, blocking and surface diffraction of ions have an impact on the final intensity distribution in the far field. Hence, the different processes contributing to the final intensities will need to be understood in order to decouple and study the relevant ion-beam scattering and deflection phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...