Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 29(47): 14386-95, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24156516

RESUMO

Interactions between colloidal particles are strongly affected by the particle surface chemistry and composition of the liquid phase. Further complexity is introduced when particles are exposed to shear flow, often leading to broad variation of the final properties of formed clusters. Here we discover a new dynamical effect arising in shear-induced aggregation where repeated aggregation and breakup events cause the particle surface roughness to irreversibly increase with time, thus decreasing the bond adhesive energy and the resistance of the aggregates to breakup. This leads to a pronounced overshoot in the time evolution of the aggregate size, which can only be explained with the proposed mechanism. This is demonstrated by good agreement between time evolution of measured light-scattering data and those calculated with a population-balance model taking into account the increase in the primary particle nanoroughness caused by repeated breakup events resulting in the decrease of bond adhesive energy as a function of time. Thus, the proposed model is able to reproduce the overshoot phenomenon by taking into account the physicochemical parameters, such as pH, till now not considered in the literature. Overall, this new effect could be exploited in the future to achieve better control over the flow-induced assembly of nanoparticles.

2.
Langmuir ; 26(16): 13142-52, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695552

RESUMO

Aggregation of rigid colloidal particles leads to fractal-like structures that are characterized by a fractal dimension d(f) which is a key parameter for describing aggregation processes. This is particularly true in shear aggregation where d(f) strongly influences aggregation kinetics. Direct measurement of d(f) in the early stages of shear aggregation is however difficult, as the aggregates are small and few in number. An alternative method for determining d(f) is to use an aggregation model that when fitted to the time evolution of the cluster mass distribution allows for estimating d(f). Here, we explore three such models, two of which are based on an effective collision sphere and one which directly incorporates the permeable structure of the aggregates, and we apply them for interpreting the initial aggregate growth measured experimentally in a turbulent stirred tank reactor. For the latter, three polystyrene latexes were used that differed only in the size of the primary particles (d(p) = 420, 600, and 810 nm). It was found that all three models describe initial aggregation kinetics reasonably well using, however, substantially different values for d(f). To discriminate among the models, we therefore also studied the regrowth of preformed aggregates where d(f) was experimentally accessible. It was found that only the model that directly incorporates the permeable structure of the aggregates is able to predict correctly this second type of experiments. Applying this model to the initial aggregation kinetics, we conclude that the actual initial fractal dimension is d(f) = 2.07 +/- 0.04 as found from this model.


Assuntos
Modelos Teóricos , Nanopartículas/química , Coloides/química , Cinética
3.
J Colloid Interface Sci ; 319(2): 577-89, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18164309

RESUMO

Aggregation and breakage of aggregates produced from fully destabilized polystyrene latex particles in turbulent flow was studied experimentally in both batch and continuous stirred tank. Detailed investigation of the initial kinetics showed that the collision efficiency, alpha, depends on the shear rate according to alpha proportional to G(-b), with a power law exponent, b, equal to 0.18. After steady state was reached the dynamic response of the system on a change in stirring speed and solid volume fraction was investigated. It was found that the steady-state values of two measured moments of the cluster mass distribution (CMD) are fully reversible upon a change in stirring speed. This indicates that although the moments of CMD at steady-state depend on the applied shear rate, the aggregate structure is independent of the shear rate in the given range of stirring speeds. This was proved by independent measurement of the fractal dimension, d(f), using image analysis which provided a d(f) equal to 2.62 +/- 0.18 independent of applied stirring speed. The critical aggregate size, below which breakage is negligible, determined by dilution experiments was consequently used to evaluate the aggregate cohesive force holding the aggregate together, which was found to be independent of the aggregate size and equal to 6.2 +/- 1.0 nN.

4.
Langmuir ; 23(4): 1664-73, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17279643

RESUMO

Aggregation and breakage of aggregates of fully destabilized polystyrene latex particles in turbulent flow was studied experimentally in both batch and continuous stirred tanks. Small-angle static light scattering (SASLS) was used to monitor the time evolution of two independent moments of the cluster mass distribution (CMD), namely, the mean radius of gyration and the zero angle scattered light intensity. In addition, information about the structure of the aggregates was obtained in terms of the static light scattering structure factor. It was observed that decreasing the solid volume fraction over more than one order of magnitude resulted in monotonically decreasing steady-state values of both moments of the CMD. Using a combination of batch operation and continuous dilution with particle-free solution in the stirred tank, it was found that the steady-state distributions were fully reversible upon changing the solid volume fraction. These observations indicate that the steady-state CMD in this system is controlled by the dynamic equilibrium between aggregation (with the second-order kinetics in cluster concentration) and breakage (with the first-order kinetics in cluster concentration). In addition, by dilution to very low solid volume fractions, we demonstrate the existence of a critical aggregate size below which breakage is negligible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...