Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
ACS Med Chem Lett ; 15(6): 806-813, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894912

RESUMO

Blocking the immunosuppressive function of T-cell immunoglobulin mucin-3 (TIM-3) is an established therapeutic strategy to maximize the efficacy of immune checkpoint inhibitors for cancer immunotherapy. Currently, effective inhibition of TIM-3 interactions relies on monoclonal antibodies (mAbs), which come with drawbacks such as immunogenicity risk, limited tumor penetration, and high manufacturing costs. Guided by the X-ray cocrystal structures of TIM-3 with mAbs, we report an in silico structure-based rational design of constrained peptides as potent TIM-3 inhibitors. The top cyclic peptide from our study (P2) binds TIM-3 with a K D value of 166.3 ± 12.1 nM as determined by surface plasmon resonance (SPR) screening. Remarkably, P2 efficiently inhibits key TIM-3 interactions with natural TIM-3 ligands at submicromolar concentrations in a panel of cell-free and cell-based assays. The capacity of P2 to reverse immunosuppression in T-cell/cancer cell cocultures, coupled with favorable in vitro pharmacokinetic properties, highlights the potential of P2 for further evaluation in preclinical models of immuno-oncology.

2.
RSC Adv ; 14(5): 2918-2928, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239446

RESUMO

Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor found in various tissues that plays a crucial role in the differentiation and proliferation of T helper 17 (Th17) cells, as well as in their generation of the pro-inflammatory cytokine IL-17A. RORγt represents a promising therapeutic target for autoimmune diseases, metabolic disorders, and multiple tumors. Despite extensive research efforts focused on the development of small molecule RORγt modulators, no drug candidates have advanced to phase 3 clinical trials owing to a lack of efficacy or safety margin. This outcome highlights the unmet need to optimize small molecule drug candidates targeting RORγt to develop effective therapies for autoimmune and inflammatory diseases. In this study, we synthesized and evaluated 3-oxo-lithocholic acid amidates as a new class of RORγt modulators. Our evaluation entailed biophysical screening, cellular screening in different platforms, molecular docking, and in vitro pharmacokinetic profiling. The top compound from our study (3-oxo-lithocholic acid amidate, A2) binds to RORγt at an equilibrium dissociation constant (KD) of 16.5 ± 1.34 nM based on microscale thermophoresis (MST). Assessment of the efficacy of A2 in the cellular RORγt reporter luciferase assay revealed a half-maximal inhibitory concentration (IC50) value of 225 ± 10.4 nM. Unlike 3-oxo-lithocholic acid, A2 demonstrated the ability to reduce the IL-17A mRNA expression levels in EL4 cells with RORγt expression using quantitative reverse transcriptase PCR (RT-PCR). Validation of the desirable physicochemical properties and stability of A2 sets the stage for the preclinical evaluation of this new class of RORγt modulators in animal models of autoimmune diseases.

3.
Small ; 20(9): e2304534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849036

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Nanovacinas , SARS-CoV-2 , Escherichia coli , Lipossomos , COVID-19/prevenção & controle , Lipídeos
4.
ACS Chem Neurosci ; 15(3): 539-559, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38149821

RESUMO

The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aß aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aß42 oligomers at 10 µM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 µM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aß42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 µM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aß oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of ß-amyloid (Aß) aggregation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Quinolonas , Humanos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Inibidores da Colinesterase/farmacologia , Quinolonas/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Neuroblastoma/tratamento farmacológico , Peptídeos beta-Amiloides/química , Relação Estrutura-Atividade
5.
Vaccines (Basel) ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38005987

RESUMO

The emergence of vaccine-evading SARS-CoV-2 variants urges the need for vaccines that elicit broadly neutralizing antibodies (bnAbs). Here, we assess covalently circularized nanodiscs decorated with recombinant SARS-CoV-2 spike glycoproteins from several variants for eliciting bnAbs with vaccination. Cobalt porphyrin-phospholipid (CoPoP) was incorporated into the nanodisc to allow for anchoring and functional orientation of spike trimers on the nanodisc surface through their His-tag. Monophosphoryl-lipid (MPLA) and QS-21 were incorporated as immunostimulatory adjuvants to enhance vaccine responses. Following optimization of nanodisc assembly, spike proteins were effectively displayed on the surface of the nanodiscs and maintained their conformational capacity for binding with human angiotensin-converting enzyme 2 (hACE2) as verified using electron microscopy and slot blot assay, respectively. Six different formulations were prepared where they contained mono antigens; four from the year 2020 (WT, Beta, Lambda, and Delta) and two from the year 2021 (Omicron BA.1 and BA.2). Additionally, we prepared a mosaic nanodisc displaying the four spike proteins from year 2020. Intramuscular vaccination of CD-1 female mice with the mosaic nanodisc induced antibody responses that not only neutralized matched pseudo-typed viruses, but also neutralized mismatched pseudo-typed viruses corresponding to later variants from year 2021 (Omicron BA.1 and BA.2). Interestingly, sera from mosaic-immunized mice did not effectively inhibit Omicron spike binding to human ACE-2, suggesting that some of the elicited antibodies were directed towards conserved neutralizing epitopes outside the receptor binding domain. Our results show that mosaic nanodisc vaccine displaying spike proteins from 2020 can elicit broadly neutralizing antibodies that can neutralize mismatched viruses from a following year, thus decreasing immune evasion of new emerging variants and enhancing healthcare preparedness.

6.
ChemMedChem ; 18(23): e202300305, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37845178

RESUMO

There are currently no small molecules clinically approved as immune checkpoint modulators. Besides possessing oral bioavailability, cell-penetrating capabilities and enhanced tumor penetration compared to monoclonal antibodies (mAbs), small molecules are amenable to pharmacokinetic optimization, which allows adopting flexible dosage regimens that may avoid immune-related adverse events associated with mAbs. The interaction of inducible co-stimulator (ICOS) with its ligand (ICOS-L) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. This study represents the development and validation of a virtual screening strategy to identify small molecules that bind a novel druggable binding pocket in human ICOS. We used a lipophilic canyon in the apo-structure of ICOS and the ICOS/ICOS-L interface individually as templates for molecular dynamics simulation to generate 3D pharmacophores subsequently used for virtual screening campaigns. Our strategy was successful finding a first-in-class small molecule ICOS binder (5P, KD value=108.08±26.76 µM) and validating biophysical screening platforms for ICOS-targeted small molecules. We anticipate that future structural optimization of 5P will result in the discovery of high affinity chemical ligands for ICOS.


Assuntos
Farmacóforo , Linfócitos T , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Linfócitos T/metabolismo , Anticorpos Monoclonais
7.
RSC Med Chem ; 14(9): 1767-1777, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37731692

RESUMO

The interaction of the inducible co-stimulator (ICOS) with its ligand (ICOSL) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. The ICOS/ICOSL pathway is a validated target for T-cell lymphomas induced by the proliferation of T-follicular helper (Tfh) cells. Moreover, the inhibition of ICOS/ICOSL interaction can decrease the enhancement of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. However, targeting ICOS/ICOSL interaction is currently restricted to monoclonal antibodies (mAbs) and there are no small molecules in existence that can block ICOS/ICOSL. To fill this gap, we report herein the first time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit ICOS/ICOSL interaction. Implementation of the developed TR-FRET assay in high-throughput screening (HTS) of a focused chemical library resulted in the identification of AG-120 as a first-in-class inhibitor of ICOS/ICOSL interaction. We further employed docking studies and molecular dynamics (MD) simulations to identify the plausible mechanism of blocking ICOS/ICOSL complex formation by AG-120. Using the structure-activity relationship (SAR) by catalog approach, we identified AG-120-X with an IC50 value of 4.68 ± 0.47 µM in the ICOS/ICOSL TR-FRET assay. Remarkably, AG-120-X revealed a dose-dependent ability to block ICOS/ICOSL interaction in a bioluminescent cellular assay based on co-culturing Jurkat T cells expressing ICOS and CHO-K1 cells expressing ICOSL. This work will pave the way for future drug discovery efforts aiming at the development of small molecule inhibitors of ICOS/ICOSL interaction as potential therapeutics for cancer as well as other diseases.

8.
J Med Chem ; 66(16): 11464-11475, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566998

RESUMO

T-cell immunoglobulin and mucin domain 3 (TIM-3) is a negative immune checkpoint that represents a promising target for cancer immunotherapy. Although encouraging results have been observed for TIM-3 inhibition in the context of acute myeloid leukemia (AML), targeting TIM-3 is currently restricted to monoclonal antibodies (mAbs). To fill this gap, we implemented a pharmacophore-based screening approach to identify small-molecule TIM-3 inhibitors. Our approach resulted in the identification of hit compounds with TIM-3 binding affinity. Subsequently, we used the structure-activity relationship (SAR) by a catalog approach to identify compound A-41 with submicromolar TIM-3 binding affinity. Remarkably, A-41 demonstrated the ability to block TIM-3 interactions with key ligands and inhibited the immunosuppressive function of TIM-3 using an in vitro coculture assay. This work will pave the way for future drug discovery efforts aiming at the development of small-molecule inhibitors TIM-3 for AML.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Leucemia Mieloide Aguda , Humanos , Anticorpos Monoclonais/uso terapêutico , Técnicas de Cocultura , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Farmacóforo
9.
ACS Med Chem Lett ; 14(5): 629-635, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197466

RESUMO

Lymphocyte activation gene 3 (LAG-3) is a negative immune checkpoint that plays a key role in downregulating the immune response to cancer. Inhibition of LAG-3 interactions allows T cells to regain cytotoxic activity and reduce the immunosuppressive function of regulating T cells. We utilized a combination approach of focused screening and "SAR by catalog" to identify small molecules that function as dual inhibitors of the interactions of LAG-3 with major histocompatibility complex (MHC) class II and fibrinogen-like protein 1 (FGL1). Our top hit compound inhibited both LAG-3/MHCII and LAG-3/FGL1 interactions in biochemical binding assays with IC50 values of 4.21 ± 0.84 and 6.52 ± 0.47 µM, respectively. Moreover, we have demonstrated the ability of our top hit compound to block LAG-3 interactions in cell-based assays. This work will pave the way for future drug discovery efforts aiming at the development of LAG-3-based small molecules for cancer immunotherapy.

10.
SLAS Discov ; 28(4): 188-192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121273

RESUMO

Lymphocyte activation gene 3 (LAG-3) is a negative immune checkpoint and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. Fibrinogen-like protein 1 (FGL1) is a major LAG-3 functional ligand that is upregulated in various human cancers. LAG-3 positive T cells bind FGL1 expressed by cancer cells, which inhibits T-cell activation and cytokine secretion via indirect blocking of T cell receptor (TCR) signaling. High expression of LAG-3 and FGL1 in patients with solid tumors is associated with drug resistance and decreased survival in response to FDA-approved immune checkpoint inhibitors. Therefore, targeting the LAG-3/FGL1 pathway represents a promising therapeutic strategy to maximize the number of patients benefiting from checkpoint blockade therapy. However, there are no small molecules in existence that target LAG-3/FGL1 interaction. Herein, we report a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate the ability of small molecules to inhibit LAG-3/FGL1 interaction. We further demonstrate the implementation of the developed assay in screening chemical libraries of small molecules from the NCI Diversity Set VII, FDA-approved drugs, and a focused library of NF-κB modulators. This work will pave the way for drug discovery efforts focused on therapeutic targeting of LAG-3/FGL1 interaction using small molecules.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Linfocitária , Fibrinogênio
11.
Eur J Med Chem ; 254: 115354, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043996

RESUMO

Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 µM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aß42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 µM and 1.09 µM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 µM and 2.71 µM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Neuroblastoma/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Peptídeos beta-Amiloides/metabolismo
12.
Biomed J ; 46(6): 100588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36925108

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS: Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS: Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION: These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Camundongos , Lipossomos , Infecções por Escherichia coli/prevenção & controle , Diarreia , Adesinas Bacterianas , Antígenos de Bactérias
13.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977542

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Bloqueadores , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos de Protozoários , Humanos , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Vacinação
14.
Commun Biol ; 5(1): 773, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915227

RESUMO

A vaccine targeting multiple stages of the Plasmodium falciparum parasite life cycle is desirable. The sporozoite surface Circumsporozoite Protein (CSP) is the target of leading anti-infective P. falciparum pre-erythrocytic vaccines. Pfs230, a sexual-stage P. falciparum surface protein, is currently in trials as the basis for a transmission-blocking vaccine, which inhibits parasite development in the mosquito vector. Here, recombinant full-length CSP and a Pfs230 fragment (Pfs230D1+) are co-displayed on immunogenic liposomes to induce immunity against both infection and transmission. Liposomes contain cobalt-porphyrin phospholipid (CoPoP), monophosphoryl lipid A and QS-21, and rapidly bind His-tagged CSP and Pfs230D1+ upon admixture to form bivalent particles that maintain reactivity with conformational monoclonal antibodies. Use of multicolor fluorophore-labeled antigens reveals liposome binding upon admixture, stability in serum and enhanced uptake in murine macrophages in vitro. Bivalent liposomes induce humoral and cellular responses against both CSP and Pfs230D1+. Vaccine-induced antibodies reduce parasite numbers in mosquito midguts in a standard membrane feeding assay. Mice immunized with liposome-displayed antigens or that passively receive antibodies from immunized rabbits have reduced parasite liver burden following challenge with transgenic sporozoites expressing P. falciparum CSP.


Assuntos
Vacinas Antimaláricas , Plasmodium falciparum , Animais , Anticorpos Antiprotozoários , Antígenos , Lipossomos , Camundongos , Proteínas de Protozoários/genética , Coelhos , Esporozoítos
15.
Afr J Prim Health Care Fam Med ; 14(1): e1-e6, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35144450

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a novel sickness that emerged worldwide as an unprecedented crisis and led to major effects on the daily life of the general public as well as negative impacts on their mental well-being. AIM: This study aimed to assess satisfaction with life and psychological distress during the COVID-19 pandemic in Egypt. SETTING: An online study was conducted in Egypt. METHODS: A cross-sectional online survey was fulfilled by 1056 Egyptian adults from 06 to 13 June 2020. Psychological distress and satisfaction with life were measured by Arabic validated versions of the Kessler Psychological Distress Scale (K10) and the Satisfaction with Life Scale (SWLS). RESULTS: About half of the surveyed respondents (51%) were satisfied with their life, whilst 57.4% experienced severe psychological distress. The independent predictors of satisfaction with life are being married, satisfactory income, low distress, moderate distress and high distress (adjusted odds ratio [AOR] = 1.2, 3.0, 2.5, 6.9, 5.2 and 2.1, respectively). Being a female, having secondary education, secondary education, unsatisfactory income and presence of mental illness are the independent predictors of mental distress (AOR = 2.3, 3.9, 1.9, 1.9, 1.6 and 4.0, respectively). CONCLUSION: The study provides evidence about the high prevalence of psychological distress during the peak period of Egypt's COVID-19 pandemic. The study results highlight the enhancement of development interventions to promote psychological well-being and feeling of satisfaction with life during the pandemic.


Assuntos
COVID-19 , Angústia Psicológica , Adulto , Estudos Transversais , Egito/epidemiologia , Feminino , Humanos , Pandemias , Satisfação Pessoal , SARS-CoV-2
17.
Adv Mater ; 34(12): e2107781, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34894000

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Lipossomos , Nanopartículas , SARS-CoV-2
18.
Saudi J Kidney Dis Transpl ; 33(1): 201-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36647997

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. It is not only associated with liver-related mortality and morbidity but is a multisystem disease that affects multiple extra-hepatic organ systems, such as the kidneys and cardiovascular system. Our study was conducted to evaluate the possible relationship between NAFLD and the risk of chronic kidney disease (CKD) development. This is a comparative cross-sectional study. The study was conducted on 100 patients who were diagnosed with NAFLD by abdominal ultrasound, CKD was diagnosed either by estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m2 or by the presence of albuminuria (albumin creatinine ratio >30 mg/g).These patients were classified into two groups, the CKD group and the non-CKD group, and the two groups were compared according to different parameters. The data were collected, presented, and statistically analyzed with the computer program IBM SPSS Statistics version 23. Among 100 NAFLD patients, there were 19 patients developed CKD diagnosed either by eGFR or by the presence of albuminuria. These CKD patients were older, have abdominal obesity, higher body mass index, higher cholesterol level, higher low-density lipoprotein level, higher triglycerides levels, higher systolic and diastolic blood pressure, and higher fatty liver index and a higher degree of fatty liver by ultrasound. Our current study suggests that NAFLD may be associated with a high risk of CKD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Albuminúria/epidemiologia , Albuminúria/complicações , Prevalência , Estudos Transversais , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/complicações , Taxa de Filtração Glomerular/fisiologia , Fatores de Risco
19.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851667

RESUMO

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

20.
Bioorg Chem ; 116: 105354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562674

RESUMO

Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aß42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aß oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinazolinas/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...