Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0087023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37310732

RESUMO

Resistance to fluconazole (FLC), the most widely used antifungal drug, is typically achieved by altering the azole drug target and/or drug efflux pumps. Recent reports have suggested a link between vesicular trafficking and antifungal resistance. Here, we identified novel Cryptococcus neoformans regulators of extracellular vesicle (EV) biogenesis that impact FLC resistance. In particular, the transcription factor Hap2 does not affect the expression of the drug target or efflux pumps, yet it impacts the cellular sterol profile. Subinhibitory FLC concentrations also downregulate EV production. Moreover, in vitro spontaneous FLC-resistant colonies showed altered EV production, and the acquisition of FLC resistance was associated with decreased EV production in clinical isolates. Finally, the reversion of FLC resistance was associated with increased EV production. These data suggest a model in which fungal cells can regulate EV production in place of regulating the drug target gene expression as a first line of defense against antifungal assault in this fungal pathogen. IMPORTANCE Extracellular vesicles (EVs) are membrane-enveloped particles that are released by cells into the extracellular space. Fungal EVs can mediate community interactions and biofilm formation, but their functions remain poorly understood. Here, we report the identification of the first regulators of EV production in the major fungal pathogen Cryptococcus neoformans. Surprisingly, we uncover a novel role of EVs in modulating antifungal drug resistance. Disruption of EV production was associated with altered lipid composition and changes in fluconazole susceptibility. Spontaneous azole-resistant mutants were deficient in EV production, while loss of resistance restored initial EV production levels. These findings were recapitulated in C. neoformans clinical isolates, indicating that azole resistance and EV production are coregulated in diverse strains. Our study reveals a new mechanism of drug resistance in which cells adapt to azole stress by modulating EV production.


Assuntos
Criptococose , Cryptococcus neoformans , Vesículas Extracelulares , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/microbiologia , Azóis , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
2.
J Fungi (Basel) ; 9(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36836270

RESUMO

Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of ß-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall ß-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways.

3.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836370

RESUMO

GPI-anchored proteins display very diverse biological (biochemical and immunological) functions. An in silico analysis has revealed that the genome of Aspergillus fumigatus contains 86 genes coding for putative GPI-anchored proteins (GPI-APs). Past research has demonstrated the involvement of GPI-APs in cell wall remodeling, virulence, and adhesion. We analyzed a new GPI-anchored protein called SwgA. We showed that this protein is mainly present in the Clavati of Aspergillus and is absent from yeasts and other molds. The protein, localized in the membrane of A. fumigatus, is involved in germination, growth, and morphogenesis, and is associated with nitrogen metabolism and thermosensitivity. swgA is controlled by the nitrogen regulator AreA. This current study indicates that GPI-APs have more general functions in fungal metabolism than cell wall biosynthesis.

4.
Med Mycol ; 59(8): 763-772, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33550403

RESUMO

Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility.This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. LAY SUMMARY: A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Azóis/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Fator de Ligação a CCAAT/genética , Membrana Celular/química , Membrana Celular/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Cromatografia Gasosa-Espectrometria de Massas , Proteína HMGB1/genética , Autoantígeno Ku/antagonistas & inibidores , Autoantígeno Ku/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteróis/análise , Transcriptoma , Voriconazol/farmacologia
5.
J Fungi (Basel) ; 7(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419224

RESUMO

Establishment of a fungal infection due to Aspergillus fumigatus relies on the efficient germination of the airborne conidia once they penetrate the respiratory tract. However, the features of conidial germination have been poorly explored and understood in this fungal species as well as in other species of filamentous fungi. We show here that the germination of A. fumigatus is asynchronous. If the nutritional environment and extensive gene deletions can modify the germination parameters for A. fumigatus, the asynchrony is maintained in all germinative conditions tested. Even though the causes for this asynchrony of conidial germination remain unknown, asynchrony is essential for the completion of the biological cycle of this filamentous fungus.

6.
Proc Natl Acad Sci U S A ; 117(26): 14948-14957, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541034

RESUMO

Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3ß-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3ß-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of "higher" fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus We show that a bifunctional enzyme, ergosteryl-3ß-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase-that produces aspartyl-tRNAAsp (Asp-tRNAAsp)-and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across "higher" fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.


Assuntos
Ácido Aspártico/metabolismo , Aspergillus fumigatus/metabolismo , RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Esteróis/metabolismo , Aminoacilação , Ácido Aspártico/química , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , RNA Fúngico/química , RNA Fúngico/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Esteróis/química
7.
Curr Top Microbiol Immunol ; 425: 167-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32418035

RESUMO

Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response. In this review, we investigated for the first time an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumigatus genome. An A. fumigatus mutant library of all the genes that encode in silico identified GPI anchored proteins has been constructed and the phenotypic analysis of all these mutants has been characterized including their growth, conidial viability or morphology, adhesion and the ability to form biofilms. We showed the presence of different fungal categories of GPI anchored proteins in the A. fumigatus genome associated to their role in cell wall remodeling, adhesion, and biofilm formation.


Assuntos
Aspergillus fumigatus/citologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Morfogênese , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Fúngicas/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32117802

RESUMO

Deacetylation of chitin by chitin deacetylases (Cda) results in the formation of chitosan. Chitosan, a polymer of ß1,4 linked glucosamine, plays multiple roles in the function of the fungal cell wall, including virulence and evasion of host immune responses. In this study, the roles of chitosan and putative CDAs in cell wall structure and virulence of Aspergillus fumigatus were investigated. Low levels of chitosan were found in the conidial and cell wall of A. fumigatus. Seven putative CDA genes were identified, disrupted and the phenotype of the single mutants and the septuple mutants were investigated. No alterations in fungal cell wall chitosan levels, changes in fungal growth or alterations in virulence were detected in the single or septuple Δcda1-7 mutant strains. Collectively, these results suggest that chitosan is a minority component of the A. fumigatus cell wall, and that the seven candidate Cda proteins do not play major roles in fungal cell wall synthesis or virulence. However, Cda2 is involved in conidiation, suggesting that this enzyme may play a role in N-acetyl-glucosamine metabolism.


Assuntos
Aspergillus fumigatus , Parede Celular , Aspergillus fumigatus/genética , Quitina , Esporos Fúngicos , Virulência
9.
Cell Microbiol ; 21(12): e13102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31424155

RESUMO

The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched ß(1-3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.


Assuntos
Aspergillus fumigatus/genética , Parede Celular/genética , Proteínas Fúngicas/genética , Morfogênese/genética , Esporos Fúngicos/genética , Quitina/genética
10.
mSphere ; 4(4)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366710

RESUMO

The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. At the cell wall level, enzyme activities are involved in postsynthesis polysaccharide modifications such as cleavage, elongation, branching, and cross-linking. Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to participate in cell wall biosynthesis and specifically in polysaccharide remodeling. Among these proteins, the DFG family plays an essential role in controlling polar growth in yeast. In the filamentous fungus and opportunistic human pathogen Aspergillus fumigatus, the DFG gene family contains seven orthologous DFG genes among which only six are expressed under in vitro growth conditions. Deletions of single DFG genes revealed that DFG3 plays the most important morphogenetic role in this gene family. A sextuple-deletion mutant resulting from the deletion of all in vitro expressed DFG genes did not contain galactomannan in the cell wall and has severe growth defects. This study has shown that DFG members are absolutely necessary for the insertion of galactomannan into the cell wall of A. fumigatus and that the proper cell wall localization of the galactomannan is essential for correct fungal morphogenesis in A. fumigatusIMPORTANCE The fungal cell wall is a complex and dynamic entity essential for the development of fungi. It is composed mainly of polysaccharides that are synthetized by protein complexes. Enzymes involved in postsynthesis polysaccharide modifications, such as cleavage, elongation, branching, and cross-linking, are essential for fungal life. Here, we investigated in Aspergillus fumigatus the role of the members of the Dfg family, one of the 4 GPI-anchored protein families common to yeast and molds involved in cell wall remodeling. Molecular and biochemical approaches showed that DFG members are required for filamentous growth, conidiation, and cell wall organization and are essential for the life of this fungal pathogen.


Assuntos
Aspergillus fumigatus/genética , Parede Celular/química , Quitina/química , Glicosilfosfatidilinositóis/química , Mananas/química , beta-Glucanas/química , Aspergillus fumigatus/química , Proteínas Fúngicas/genética , Galactose/análogos & derivados , Deleção de Genes , Proteoglicanas , Virulência
11.
Eur J Immunol ; 49(6): 918-927, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903663

RESUMO

Aspergillus fumigatus is an important cause of pulmonary and systemic infections in immune compromised individuals, and of corneal ulcers and blindness in immune competent patients. To examine the role of chitin synthases in Aspergillus corneal infection, we analyzed Aspergillus mutants of chitin synthase family 1 and family 2, and found that compared with the parent strain, the quadruple mutants from both families were more readily killed by neutrophils in vitro, and that both also exhibited impaired hyphal growth in the cornea. Further, inhibition of chitin synthases using Nikkomycin Z enhanced neutrophil killing in vitro and in vivo in a murine model of A. fumigatus corneal infection. Acidic mammalian chitinase (AMCase) is mostly produced by macrophages in asthmatic lungs; however, we now demonstrate that neutrophils are a major source of AMCase, which inhibits hyphal growth. In A. fumigatus corneal infection, neutrophils are the major source of AMCase, and addition of AMCase inhibitors or adoptive transfer of neutrophils from AMCase-/- mice resulted in impaired hyphal killing. Together, these findings identify chitin synthases as important fungal virulence factors and neutrophil-derived AMCase as an essential mediator of host defense.


Assuntos
Aspergilose/imunologia , Quitina Sintase/imunologia , Quitinases/metabolismo , Ceratite/imunologia , Neutrófilos/imunologia , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Quitina Sintase/biossíntese , Humanos , Ceratite/metabolismo , Ceratite/microbiologia , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Virulência
12.
J Fungi (Basel) ; 4(1)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393895

RESUMO

Glycosylphosphatidylinositols (GPIs) are lipid anchors allowing the exposure of proteins at the outer layer of the plasma membrane. In fungi, a number of GPI-anchored proteins (GPI-APs) are involved in the remodeling of the cell wall polymers. GPIs follow a specific biosynthetic pathway in the endoplasmic reticulum. After the transfer of the protein onto the GPI-anchor, a lipid remodeling occurs to substitute the diacylglycerol moiety by a ceramide. In addition to GPI-APs, A. fumigatus produces a GPI-anchored polysaccharide, the galactomannan (GM), that remains unique in the fungal kingdom. To investigate the role of the GPI pathway in the biosynthesis of the GM and cell wall organization, the deletion of PER1-coding for a phospholipase required for the first step of the GPI lipid remodeling-was undertaken. Biochemical characterization of the GPI-anchor isolated from GPI-APs showed that the PER1 deficient mutant produced a lipid anchor with a diacylglycerol. The absence of a ceramide on GPI-anchors in the Δper1 mutant led to a mislocation of GPI-APs and to an alteration of the composition of the cell wall alkali-insoluble fraction. On the other hand, the GM isolated from the Δper1 mutant membranes possesses a ceramide moiety as the parental strain, showing that GPI anchor of the GM follow a distinct unknown biosynthetic pathway.

13.
J Fungi (Basel) ; 4(1)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385695

RESUMO

Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the ß(1,3)glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In the Glycosyl-Hydrolases family 17 (GH17) of A. fumigatus, two ß(1,3)glucanosyltransferases, Bgt1p and Bgt2p, have been previously characterized. Disruption of BGT1 and BGT2 did not result in a phenotype, but sequence comparison and hydrophobic cluster analysis showed that three other genes in A. fumigatus belong to the GH17 family, SCW4, SCW11, and BGT3. In constrast to Δbgt1bgt2 mutants, single and multiple deletion of SCW4, SCW11, and BGT3 showed a decrease in conidiation associated with a higher conidial mortality and an abnormal conidial shape. Moreover, mycelium was also affected with a slower growth, stronger sensitivity to cell wall disturbing agents, and altered cell wall composition. Finally, the synthetic interactions between Bgt1p, Bgt2p, and the three other members, which support a functional cooperation in cell-wall assembly, were analyzed. Our data suggest that Scw4p, Scw11p, and Bgt3p are essential for cell wall integrity and might have antagonistic and distinct functions to Bgt1p and Bgt2p.

14.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677124

RESUMO

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Esporos Fúngicos/genética , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Humanos , Proteínas de Membrana/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Virulência/genética
15.
mBio ; 8(3)2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634239

RESUMO

ß-(1,3)-Glucan, the major fungal cell wall component, ramifies through ß-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify ß-(1,6)-branching on ß-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2Δ and gas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced ß-(1,6)-branching on the ß-(1,3)-oligomers following its ß-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear ß-(1,3)-oligomers as well as Bgl2p-catalyzed products [short ß-(1,3)-oligomers linked by a linear ß-(1,6)-linkage]. The double S. cerevisiae gas1Δ bgl2Δ mutant showed a drastically sick phenotype. An ScGas1p ortholog, Gel4p from Aspergillus fumigatus, also showed dual ß-(1,3)-glucan elongating and branching activity. Both ScGas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual ß-(1,3)-glucan elongating and branching activity. Our report unravels the ß-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life.IMPORTANCE The fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core ß-(1,3)-glucan ramification, is poorly understood; the ramified ß-(1,3)-glucan interconnects other cell wall components. Once linear ß-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. Using Saccharomyces cerevisiae as a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the ß-(1,3)-glucan branching. The sick phenotype of the double Scgas1Δ bgl2Δ mutant suggested that ß-(1,3)-glucan branching is essential. In addition to ScGas1p, GH72 family ScGas2p and Aspergillus fumigatus Gel4p, having CBM43 in their sequences, showed dual ß-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall ß-(1,3)-glucan branching mechanism. The essentiality of ß-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets.


Assuntos
Parede Celular/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Deleção de Genes , Testes Genéticos , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glicoproteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Cell Microbiol ; 18(12): 1881-1891, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27603677

RESUMO

The galactomannan is a major cell wall molecule of Aspergillus fumigatus. This molecule is composed of a linear mannan with a repeating unit composed of four α1,6 and α1,2 linked mannose with side chains of galactofuran. To obtain a better understanding of the mannan biosynthesis in A. fumigatus, it was decided to undertake the successive deletion of the 11 genes which are putative orthologs of the mannosyltransferases responsible for establishing α1,6 and α1,2 mannose linkages in yeast. These deletions did not lead to a reduction of the mannan content of the cell wall of the mycelium of A. fumigatus. In contrast, the mannan content of the conidial cell wall was reduced and this reduction was associated with a partial disorganization of the cell wall leading to defects in conidial survival both in vitro and in vivo.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mananas/metabolismo , Manosiltransferases/genética , Micélio/metabolismo , Esporos Fúngicos/metabolismo , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Configuração de Carboidratos , Parede Celular/química , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Galactose/análogos & derivados , Deleção de Genes , Interações Hospedeiro-Patógeno , Mananas/química , Manose/química , Manose/metabolismo , Manosiltransferases/metabolismo , Camundongos , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/patogenicidade , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
17.
Cell Microbiol ; 18(9): 1285-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306610

RESUMO

The fungal cell wall is a rigid structure because of fibrillar and branched ß-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on ß-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-ß-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo ß-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation.


Assuntos
Aspergillus fumigatus/enzimologia , Parede Celular/enzimologia , Proteínas Fúngicas/fisiologia , Glicosídeo Hidrolases/fisiologia , Esporos Fúngicos/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Configuração de Carboidratos , Parede Celular/ultraestrutura , Glicosilação , Morfogênese , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura
18.
Front Microbiol ; 4: 81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616783

RESUMO

In Aspergillus fumigatus like in other filamentous ascomycetes, ß-1,3-glucan constitutes a prominent cell wall component being responsible for rigidity of the cell wall structure. In filamentous fungi, softening of the cell wall is absolutely required during conidial germination and hyphal branching. Because of the central structure of ß-1,3-glucans, it is expected that ß-1,3-glucanases play a major role in cell wall softening. Based on in silico and experimental data, this review gives an overview of ß-1,3-glucan modifying enzymes in A. fumigatus genome and their putative role during morphogenesis.

19.
PLoS One ; 8(3): e58203, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483996

RESUMO

The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal) and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epidermidis, while Malassezia restricta was the main fungal inhabitant. Dandruff was correlated with a higher incidence of M. restricta and S. epidermidis and a lower incidence of P. acnes compared to the control population (p<0.05). These results suggested for the first time using molecular methods, that dandruff is linked to the balance between bacteria and fungi of the host scalp surface.


Assuntos
Malassezia/genética , Metagenoma , Propionibacterium acnes/genética , Dermatoses do Couro Cabeludo/microbiologia , Dermatoses do Couro Cabeludo/patologia , Staphylococcus epidermidis/genética , Análise de Variância , Sequência de Bases , Clonagem Molecular , DNA Ribossômico/genética , França , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Dinâmica Populacional , Análise de Sequência de DNA , Especificidade da Espécie
20.
J Biol Chem ; 288(19): 13387-96, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23508952

RESUMO

BACKGROUND: SUN proteins are involved in yeast morphogenesis, but their function is unknown. RESULTS: SUN protein plays a role in the Aspergillus fumigatus morphogenesis. Biochemical properties of recombinant SUN proteins were elucidated. CONCLUSION: Both Candida albicans and Aspergillus fumigatus sun proteins show a ß-(1,3)-glucanase activity. SIGNIFICANCE: The mode of action of SUN proteins on ß-(1,3)-glucan is unique, new, and original. In yeasts, the family of SUN proteins has been involved in cell wall biogenesis. Here, we report the characterization of SUN proteins in a filamentous fungus, Aspergillus fumigatus. The function of the two A. fumigatus SUN genes was investigated by combining reverse genetics and biochemistry. During conidial swelling and mycelial growth, the expression of AfSUN1 was strongly induced, whereas the expression of AfSUN2 was not detectable. Deletion of AfSUN1 negatively affected hyphal growth and conidiation. A closer examination of the morphological defects revealed swollen hyphae, leaky tips, intrahyphal growth, and double cell wall, suggesting that, like in yeast, AfSun1p is associated with cell wall biogenesis. In contrast to AfSUN1, deletion of AfSUN2 either in the parental strain or in the AfSUN1 single mutant strain did not affect colony and hyphal morphology. Biochemical characterization of the recombinant AfSun1p and Candida albicans Sun41p showed that both proteins had a unique hydrolysis pattern: acting on ß-(1,3)-oligomers from dimer up to insoluble ß-(1,3)-glucan. Referring to the CAZy database, it is clear that fungal SUN proteins represent a new family of glucan hydrolases (GH132) and play an important morphogenetic role in fungal cell wall biogenesis and septation.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Hifas/enzimologia , Morfogênese , Esporos Fúngicos/enzimologia , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Candida albicans/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Hidrólise , Hifas/genética , Hifas/crescimento & desenvolvimento , Dados de Sequência Molecular , Oligossacarídeos/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...