Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 24(7): 504-513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275051

RESUMO

BACKGROUND: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 µM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 µM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Desenho de Fármacos , Piridinas , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Ciclo-Oxigenase 2/metabolismo , Animais , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Analgésicos/farmacologia , Analgésicos/síntese química , Analgésicos/química , Simulação de Acoplamento Molecular , Masculino , Ratos , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/química
2.
Med Chem Res ; 32(5): 856-868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056461

RESUMO

Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry. In order to introduce some new potent COX-2 inhibitors, a new series of 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amines was designed, synthesized, and evaluated. The docking studies performed by AutoDock Vina demonstrated that docked molecules were positioned as well as a crystallographic ligand in the COX-2 active site, and SO2Me pharmacophore was inserted into the secondary pocket of COX-2 and formed hydrogen bonds with the active site. The designed compounds were synthesized through two-step reactions. In the first step, different 1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-1-one derivatives were obtained by the reaction of aniline derivatives and α-bromo-4-(methylsulfonyl)acetophenone. Then, condensation of intermediates with different 2-aminopyridines gave final compounds. Enzyme inhibition assay and formalin test were performed to evaluate the activity of these compounds. Among these compounds, 8-methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) exhibited the highest potency (IC50 = 0.07 µM) and selectivity (selectivity index = 508.6) against COX-2 enzyme (selectivity index: COX-1 IC50/COX-2 IC50). The antinociceptive activity assessment via the formalin test showed that nine derivatives (5a, 5d, 5h, 5i, 5k, 5q, 5r, 5s, and 5t) possessed significant activity compared with the control group with a p value less than 0.05.

3.
Med Chem Res ; 32(3): 495-505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713891

RESUMO

The present study was aimed at the synthesis and evaluation of a new series of benzo[4,5]imidazo[1,2-a]pyrimidine having a methylsulfonyl group as COX-2 (cyclooxygenase-2) inhibitor pharmacophore. Molecular modeling studies were performed using the Autodock program, and the results demonstrated that methylsulfonyl pharmacophore was adequately placed into the COX-2 active site. The in vitro and in vivo COX-2 inhibitory effects were also evaluated. In the in vitro assay, all newly synthesized compounds showed moderate to good selectivity for the inhibition of the COX-2 enzyme. However, compound 2-(4-(methylsulfonyl) phenyl)-4-phenylbenzo[4,5]imidazo[1,2-a]pyrimidine (5a) showed the highest COX-2 inhibitory effect (IC50: 0.05 µM) even more than celecoxib as the reference drug (IC50: 0.06 µM). For the in vivo study, the writing reflex test was used, and the results indicated that all synthesized compounds had well dose-dependent anti-nociceptive activity. The in vivo evaluation also showed that compound 2-(4-(methylsulfonyl)phenyl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrimidine (5d) had the highest activity in the writing reflex test (ED50: 5.75 mg/kg). In addition, the cytotoxicity effects of the synthesized compounds were tested on MCF-7 breast cancer cells, and all compounds showed considerable inhibitory results.

4.
Life Sci ; 302: 120505, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358594

RESUMO

AIMS: Recent studies show targeted therapy of new pyrazino[1,2-a]benzimidazole derivatives with COX-II inhibitory effects on different cancer cells. This study aimed to investigate 2D cell culture and 3D spheroid formation of glioblastoma multiforme (GBM) cells using a microfluidic device after exposure to these compounds. MAIN METHODS: After isolating astrocytes from human GBM samples, IC50 of 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) were determined as 13 µM and 85 µM, respectively. Then, in all experiments, cells were exposed to subtoxic concentrations of L1 (6.5 µM) and L2 (42.5 µM), which were ½IC50. In the following, in two phases, cell cycle, migration, and gene expression through 2D cell culture and tumor spheroid formation ability using a 3D-printed microfluidic chip were assessed. KEY FINDINGS: The obtained results showed that both compounds have positive effects in reducing G2/M cell population and GBM cell migration. Furthermore, real-time gene expression data showed that L1 and L2 significantly impact the upregulation of P21 and P53 and down-regulation of cyclin D1, MMP2, and MMP9. On the other hand, GBM spheroids exposed to L1 and L2 become smaller with fewer live cells. SIGNIFICANCE: Our data on human isolated astrocyte cells in 2D and 3D cell culture conditions showed that L1 and L2 compounds could reduce GBM cells' invasion by controlling gene expressions associated with migration and proliferation. Moreover, designing microfluidic platform and related cell culture protocols facilitates the broad screening of 3D multicellular tumor spheroids derived from GBM tumor biopsies and provides effective drug development for brain gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
5.
Mol Biol Rep ; 49(2): 1027-1036, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028851

RESUMO

BACKGROUND: FMSP is a synthesized ferrocene derivative with anti-cancer characteristics on tumor cells. Naringenin is a polyphenolic flavonoid with anti-tumor ability. METHODS: Cell viability and proliferation of two cancer cells and a normal cell line after treatment with these agents were determined with MTT assay. To predict the possible interaction between calmodulin (CaM) and FMSP and naringenin, docking studies were performed. By using fluorescence emission spectra, the effects of FMSP and naringenin on CaM structure and activity were studied. CaM-dependent activation of phosphodiesterase 1 (PDE1) by FMSP in relation to naringenin and their combination were compared. Effects of these compounds on PDE1 inhibition, cAMP accumulation, and cAMP-dependent protein kinase A (PKA) activation were assayed. RESULTS: The combination of FMSP and naringenin had more inhibitory effects on CaM structure than FMSP and naringenin alone. Results of docking analyses also confirmed efficient interaction of the two compounds with a hydrophobic pocket of calmodulin active site. Kinetic analyses of these agents' interaction with CaM showed FMSP and naringenin both competitively inhibited PDE1 activation without changing the Vmax parameter. FMSP and naringenin synergistically increased Km values at a higher level compared to FMSP or naringenin alone. The combination of these two agents also had more cytotoxic effects on cancer cells than FMSP alone. CONCLUSIONS: It was shown that mechanism of proliferation inhibition in both cancer cells by these compounds is based on CaM and consequent PDE inhibition followed by intracellular cAMP level elevation and increased PKA activity in a dose-dependent manner.


Assuntos
Calmodulina/metabolismo , Flavanonas/farmacologia , Animais , Antineoplásicos/farmacologia , Calmodulina/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Compostos Ferrosos/farmacologia , Flavonoides/farmacologia , Humanos , Metalocenos/farmacologia , Diester Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...