Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 130(7): 1483-8, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10928948

RESUMO

In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.


Assuntos
Ácidos Araquidônicos/farmacologia , Capsaicina/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Receptores de Droga/fisiologia , Vasodilatação/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Interações Medicamentosas , Feminino , Técnicas In Vitro , Masculino , Artérias Mesentéricas/fisiologia , Ratos , Ratos Wistar , Rutênio Vermelho/farmacologia , Células Receptoras Sensoriais/fisiologia
2.
Eur J Pharmacol ; 396(1): 39-42, 2000 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-10822052

RESUMO

The possibility that the anandamide transport inhibitor N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM404), structurally similar to the vanilloid receptor agonists anandamide and capsaicin, may also activate vanilloid receptors and cause vasodilation was examined. AM404 evoked concentration-dependent relaxations in segments of rat isolated hepatic artery contracted with phenylephrine. Relaxations were abolished in preparations pre-treated with capsaicin. The calcitonin-gene related peptide (CGRP) receptor antagonist CGRP-(8-37) also abolished relaxations. The vanilloid receptor antagonist capsazepine inhibited vasodilation by AM404 and blocked AM404-induced currents in patch-clamp experiments on Xenopus oocytes expressing the vanilloid subtype 1 receptor (VR1). In conclusion, AM404 activates native and cloned vanilloid receptors.


Assuntos
Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Canabinoides/metabolismo , Receptores de Droga/agonistas , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Capsaicina/farmacologia , Endocanabinoides , Feminino , Artéria Hepática/efeitos dos fármacos , Técnicas In Vitro , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptores de Droga/antagonistas & inibidores , Rimonabanto , Vasodilatação/efeitos dos fármacos , Xenopus
3.
Br J Pharmacol ; 129(7): 1490-6, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742306

RESUMO

1. In the rat hepatic artery, the SK(Ca) inhibitors UCL 1684 (300 nM) completely blocked, and scyllatoxin (1 microM) and d-tubocurarine (100 microM) partially inhibited EDHF relaxations when each of them was combined with charybdotoxin (300 nM). 2. The IK(Ca) inhibitors clotrimazole (3 microM) and 2-chlorophenyl-bisphenyl-methanol (3 microM) strongly depressed EDHF relaxations when each of them was combined with apamin (300 nM). The cytochrome P450 mono-oxygenase inhibitor ketoconazole (10 microM) had no effect in the presence of apamin. 3. Ciclazindol (10 microM), which abolishes EDHF relaxations in the presence of apamin, almost completely prevented the calcium ionophore (A23187) stimulated (86)Rb(+) influx via the Gardos channel (IK(Ca)) in human erythrocytes. 4. The Na(+)/K(+) ATPase inhibitor ouabain (500 microM) and the K(IR) blocker Ba(2+) (30 microM) neither alone nor in combination inhibited EDHF relaxations. Ba(2+) was also without effect in the presence of either apamin or charybdotoxin. 5. In contrast to EDHF, an increase in extracellular [K(+)] from 4.6 mM to 9.6, 14.6 and 19.6 mM inconsistently relaxed arteries. In K(+)-free physiological salt solution, re-admission of K(+) always caused complete and sustained relaxations which were abolished by ouabain but unaffected by Ba(2+). 6. The present study provides pharmacological evidence for the involvement of SK(Ca) and IK(Ca) in the action of EDHF in the rat hepatic artery. Our results are not consistent with the idea that EDHF is K(+) activating Na(+)/K(+) ATPase and K(IR) in this blood vessel.


Assuntos
Fatores Biológicos/farmacologia , Artéria Hepática/efeitos dos fármacos , Bloqueadores dos Canais de Potássio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Alcanos/farmacologia , Animais , Bário/farmacologia , Cálcio/fisiologia , Clotrimazol/metabolismo , Clotrimazol/farmacologia , Relação Dose-Resposta a Droga , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Artéria Hepática/fisiologia , Humanos , Técnicas In Vitro , Indóis/farmacologia , Cetoconazol/farmacologia , Ouabaína/farmacologia , Potássio/farmacologia , Canais de Potássio/fisiologia , Compostos de Quinolínio/farmacologia , Ratos , Ratos Sprague-Dawley , Radioisótopos de Rubídio/metabolismo , Venenos de Escorpião/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubocurarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...