Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6097-6105, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597398

RESUMO

This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.

2.
Nat Chem ; 16(4): 670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580723

Assuntos
Serotonina
3.
Anal Bioanal Chem ; 413(27): 6747-6767, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34686897

RESUMO

Many voltammetry methods have been developed to monitor brain extracellular dopamine levels. Fewer approaches have been successful in detecting serotonin in vivo. No voltammetric techniques are currently available to monitor both neurotransmitters simultaneously across timescales, even though they play integrated roles in modulating behavior. We provide proof-of-concept for rapid pulse voltammetry coupled with partial least squares regression (RPV-PLSR), an approach adapted from multi-electrode systems (i.e., electronic tongues) used to identify multiple components in complex environments. We exploited small differences in analyte redox profiles to select pulse steps for RPV waveforms. Using an intentionally designed pulse strategy combined with custom instrumentation and analysis software, we monitored basal and stimulated levels of dopamine and serotonin. In addition to faradaic currents, capacitive currents were important factors in analyte identification arguing against background subtraction. Compared to fast-scan cyclic voltammetry-principal components regression (FSCV-PCR), RPV-PLSR better differentiated and quantified basal and stimulated dopamine and serotonin associated with striatal recording electrode position, optical stimulation frequency, and serotonin reuptake inhibition. The RPV-PLSR approach can be generalized to other electrochemically active neurotransmitters and provides a feedback pipeline for future optimization of multi-analyte, fit-for-purpose waveforms and machine learning approaches to data analysis.


Assuntos
Encéfalo/metabolismo , Dopamina/análise , Técnicas Eletroquímicas/métodos , Serotonina/análise , Animais , Encéfalo/efeitos dos fármacos , Calibragem , Fibra de Carbono , Dopamina/farmacocinética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/estatística & dados numéricos , Escitalopram/farmacologia , Feminino , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Microeletrodos , Neurotransmissores/análise , Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Processamento de Sinais Assistido por Computador , Software
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1126-1127: 121746, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454719

RESUMO

We report on the development of an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously measuring eight biomarkers of volatile organic compound (VOC) exposure, with potential application to e-cigarette aerosol biomonitoring. Phenylmercapturic acid (PMA) and trans, trans-muconic acid (tt-MA) are metabolites of benzene; 2-aminothiazoline-4-carboxylic acid (ATCA) is a metabolite of cyanide; N-2-furoylglycine (N2FG) is a metabolite of furfural and furfuryl alcohol; 5-hydroxymethylfuroic acid (HMFA), 5-hydroxymethyl-2-furoylglycine (HMFG), and 2,5-furandicarboxylic acid (FDCA) are metabolites of 5-hydroxymethylfurfural; and 5-hydroxy-N-methylpyrrolidone (5HMP) is a metabolite of N-methyl-2-pyrrolidone. A pentafluorophenyl-modified silica column was used for chromatographic separation. The overall run time for the method is about 6 min per sample injection. The method has low to sub-nanograms per milliliter sensitivity, linearity over 3 orders of magnitude, and precision and accuracy within 15%. The method was used to measure human urine samples. Results showed that people with known benzene exposure (daily cigarette smokers) had higher levels of tt-MA and PMA compared with non-smokers. The method is advantageous for high-throughput analysis of selected VOC metabolites in large-scale, population-based studies such as the National Health and Nutrition Examination Survey (NHANES). Quantifying these urinary biomarkers is important to public health efforts to understand human exposure to VOCs from various sources, including tobacco products and electronic nicotine delivery systems.


Assuntos
Benzeno/análise , Cromatografia Líquida de Alta Pressão/métodos , Cianetos/urina , Furaldeído/urina , Espectrometria de Massas por Ionização por Electrospray/métodos , Benzeno/metabolismo , Cianetos/metabolismo , Exposição Ambiental/análise , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Fumar/metabolismo , Fumar/urina , Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/urina
5.
J Am Soc Mass Spectrom ; 30(8): 1550, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152380

RESUMO

The original article has been corrected to include the missing chemical structure in Fig. 1.

6.
J Am Soc Mass Spectrom ; 30(7): 1213-1219, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31012057

RESUMO

Multiple ion transition summation of isotopologues (MITSI) is an adaptable and easy-to-implement methodology for improving analytical sensitivity, especially for halogenated compounds and otherwise abundant isotopologues. This novel application of signal summing was applied to measure and quantitate the two most abundant ion transitions of two isotopologues of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (1DCV), a urinary metabolite of trichloroethylene (TCE). Because 1DCV is dichlorinated, only approximately half of the total potential signal is quantifiable when the monoisotopic ion transition (i.e., m/z 256 → 127 for 35Cl2) is monitored. By summing the intensity of a separate and high-abundance 1DCV isotopologue ion transition (i.e., m/z 258 → 129 to include 35Cl and 37Cl), overall signal intensity increased by over 70%. This summation technique improved the analytical sensitivity and limit of detection (LOD) by factors of 2.3 and 2.9, respectively, compared to monitoring the two transitions separately, without summation. Separation and detection were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative-ion mode with scheduled selected reaction monitoring. This approach was verified for accuracy and precision using two quality control materials. In addition, we derived a modified signal summation equation to calculate predicted signal enhancements specific to the MITSI approach. Graphical Abstract .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...