Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1203, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216609

RESUMO

In this paper we present a mathematical modelling framework for chiral phenomena associated with rotational motions, highlighting the combination of gyroscopic action with gravity. We discuss new ideas of controlling gravity-induced waves by a cluster of gyroscopic spinners. For an elementary gravitational spinner, the transient oscillations are accompanied by a full classification and examples, linked to natural phenomena observed in planetary motion. Applications are presented in the theory of chiral metamaterials, and of the dynamic response of such materials to external loads.

2.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20220074, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36209803

RESUMO

The Herschel-Quincke (HQ) tube concept for transmission loss in pipe systems is expanded to include cases of branches with modulated properties. Modulated waveguides, featuring corrugations in their geometry or speed of sound, are known to produce significant reflection even without the parallel branch of the HQ tube. The HQ tube, in its classical form, produces narrow banded transmission loss at frequencies related to the length, wavenumber and cross-section area of the parallel branch. The modulated Herschel-Quincke (MHQ) tube combines these attributes to produce enhanced transmission loss characteristics in terms of both width and number of transmission loss bands. Several modulated profiles for the speed of sound in different branches of the tube are considered and analytical expressions for the transmission loss and resonant conditions are derived. Detailed analysis of periodically stratified branch profiles demonstrates the effectiveness of the MHQ tube for fluid-borne noise attenuation in pipe systems. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.


Assuntos
Modelos Teóricos , Ruído
3.
Philos Trans A Math Phys Eng Sci ; 380(2231): 20210385, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35858077

RESUMO

The analysis of wave patterns in a structure which possesses periodicity in the spatial and temporal dimensions is presented. The topic of imperfect chiral interfaces is also considered. Although causality is fundamental for physical processes, natural wave phenomena can be observed when a wave is split at a temporal interface. A wave split at a spatial interface is a more common occurrence; however, when the coefficients of the governing equations are time-dependent, the temporal interface becomes important. Here, the associated frontal waves are studied, and regimes are analysed where the growth of the solution in time is found. Imperfect interfaces, across which the displacements are discontinuous, are also considered in the vector case of chiral elastic systems. Analytical study and asymptotic approximations are supplied with illustrative numerical examples. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.

4.
Philos Trans A Math Phys Eng Sci ; 378(2162): 20190350, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31760898

RESUMO

In this paper, we demonstrate a new approach to control flexural elastic waves in a structured chiral plate. The main focus is on creating one-way interfacial wave propagation at a given frequency by employing double resonators in a doubly periodic flexural system. The resonators consist of two beams attached to gyroscopic spinners, which act to couple flexural and rotational deformations, hence inducing chirality in the system. We show that this elastic structure supports one-way flexural waves, localized at an interface separating two sub-domains with gyroscopes spinning in opposite directions, but with otherwise identical properties. We demonstrate that a special feature of double resonators is in the directional control of wave propagation by varying the value of the gyricity, while keeping the frequency of the external time-harmonic excitation fixed. Conversely, for the same value of gyricity, the direction of wave propagation can be reversed by tuning the frequency of the external excitation. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

5.
Proc Math Phys Eng Sci ; 475(2229): 20190283, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31611723

RESUMO

In elasticity, the design of a cloaking for an inclusion or a void to leave a vibrational field unperturbed by its presence, so to achieve its invisibility, is a thoroughly analysed, but still unchallenged, mechanical problem. The 'cloaking transformation' concept, originally developed in electromagnetism and optics, is not directly applicable to elastic waves, displaying a complex vectorial nature. Consequently, all examples of elastic cloaking presented so far involve complex design and thick coating skins. These cloakings often work only for problems of unidirectional propagation, within narrow ranges of frequency, and considering only one cloaked object. Here, a new method based on the concept of reinforcement, achieved via elastic stiffening and mass redistribution, is introduced to cloak multiple voids in an elastic plate. This simple technique produces invisibility of the voids to flexural waves within an extremely broad range of frequencies and thus surpassing in many aspects all existing cloaking techniques. The proposed design principle is applicable in mechanical problems ranging from the micro-scale to the scale of civil engineering. For instance, our results show how to design a perforated load-bearing building wall, vibrating during an earthquake exactly as the same wall, but unperforated, a new finding for seismic protection.

6.
Philos Trans A Math Phys Eng Sci ; 377(2156): 20190154, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31474205

RESUMO

In this paper, we study the spectral properties of a finite system of flexural elements connected by gyroscopic spinners. We determine how the eigenfrequencies and eigenmodes of the system depend on the gyricity of the spinners. In addition, we present a transient numerical simulation that shows how a gyroscopic spinner attached to the end of a hinged beam can be used as a 'stabilizer', reducing the displacements of the beam. We also discuss the dispersive properties of an infinite periodic system of beams with gyroscopic spinners at the junctions. In particular, we investigate how the band-gaps of the structure can be tuned by varying the gyricity of the spinners. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.

7.
Philos Trans A Math Phys Eng Sci ; 377(2156): 20190101, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31474210

RESUMO

Small axial and flexural oscillations are analysed for a periodic and infinite structure, constrained by sliding sleeves and composed of elastic beams. A nested Bloch-Floquet technique is introduced to treat the nonlinear coupling between longitudinal and transverse displacements induced by the configurational forces generated at the sliding sleeve ends. The action of configurational forces is shown to play an important role from two perspectives. First, the band gap structure for purely longitudinal vibration is broken so that axial propagation may occur at frequencies that are forbidden in the absence of a transverse oscillation and, second, a flexural oscillation may induce axial resonance, a situation in which the longitudinal vibrations tend to become unbounded. The presented results disclose the possibility of exploiting configurational forces in the design of mechanical devices towards longitudinal actuation from flexural vibrations of small amplitude at given frequency. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.

8.
Proc Math Phys Eng Sci ; 475(2223): 20180816, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007556

RESUMO

A new model is proposed for elastic waves induced by a pulsating flow in a stenotic artery containing several stents. Dispersion properties of the waves depend on the stent structure-this feature is addressed in the present paper. Several vascular stenting procedures include overlapping stents; this configuration is also included in the model. The dispersion and transmission properties are analysed; the analytical derivations are accompanied by illustrative numerical examples.

9.
Proc Math Phys Eng Sci ; 475(2232): 20190313, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31892832

RESUMO

This paper addresses fundamental questions arising in the theory of Bloch-Floquet waves in chiral elastic lattice systems. This area has received a significant attention in the context of 'topologically protected' waveforms. Although practical applications of chiral elastic lattices are widely appreciated, especially in problems of controlling low-frequency vibrations, wave polarization and filtering, the fundamental questions of the relationship of these lattices to classical waveforms associated with longitudinal and shear waves retain a substantial scope for further development. The notion of chirality is introduced into the systematic analysis of dispersive elastic waves in a doubly-periodic lattice. Important quantitative characteristics of the dynamic response of the lattice, such as lattice flux and lattice circulation, are used in the analysis along with the novel concept of 'vortex waveforms' that characterize the dynamic response of the chiral system. We note that the continuum concepts of pressure and shear waves do not apply for waves in a lattice, especially in the case when the wavelength is comparable with the size of the elementary cell of the periodic structure. Special critical regimes are highlighted when vortex waveforms become dominant. Analytical findings are accompanied by illustrative numerical simulations.

10.
Proc Math Phys Eng Sci ; 474(2215): 20180132, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30100810

RESUMO

We demonstrate a new method of achieving topologically protected states in an elastic hexagonal system of trusses by attaching gyroscopic spinners, which bring chirality to the system. Dispersive features of this medium are investigated in detail, and it is shown that one can manipulate the locations of stop-bands and Dirac points by tuning the parameters of the spinners. We show that, in the proximity of such points, uni-directional interfacial waveforms can be created in an inhomogeneous lattice and the direction of such waveforms can be controlled. The effect of inserting additional soft internal links into the system, which is thus transformed into a heterogeneous triangular lattice, is also investigated, as the hexagonal lattice represents the limit case of the heterogeneous triangular lattice with soft links. This work introduces a new perspective in the design of periodic media possessing non-trivial topological features.

11.
Proc Math Phys Eng Sci ; 474(2211): 20170590, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29662337

RESUMO

The paper includes novel results for the scattering and localization of a time-harmonic flexural wave by a semi-infinite herringbone waveguide of rigid pins embedded within an elastic Kirchhoff plate. The analytical model takes into account the orientation and spacing of the constituent parts of the herringbone system, and incorporates dipole approximations for the case of closely spaced pins. Illustrative examples are provided, together with the predictive theoretical analysis of the localized waveforms.

12.
Proc Math Phys Eng Sci ; 474(2209): 20170670, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29434515

RESUMO

This paper focuses on the modelling of fluid-structure interaction and wave propagation problems in a stented artery. Reflection of waves in blood vessels is well documented in the literature, but it has always been linked to a strong variation in geometry, such as the branching of vessels. The aim of this work is to detect the possibility of wave reflection in a stented artery due to the repetitive pattern of the stents. The investigation of wave propagation and possible blockages under time-harmonic conditions is complemented with numerical simulations in the transient regime.

13.
Sci Rep ; 7(1): 17712, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255200

RESUMO

Endovascular sealing is a new technique for the repair of abdominal aortic aneurysms. Commercially available in Europe since 2013, it takes a revolutionary approach to aneurysm repair through minimally invasive techniques. Although aneurysm sealing may be thought as more stable than conventional endovascular stent graft repairs, post-implantation movement of the endoprosthesis has been described, potentially leading to late complications. The paper presents for the first time a model, which explains the nature of forces, in static and dynamic regimes, acting on sealed abdominal aortic aneurysms, with references to real case studies. It is shown that elastic deformation of the aorta and of the endoprosthesis induced by static forces and vibrations during daily activities can potentially promote undesired movements of the endovascular sealing structure.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/cirurgia , Procedimentos Endovasculares/métodos , Prótese Vascular , Implante de Prótese Vascular/métodos , Simulação por Computador , Modelos Teóricos , Desenho de Prótese , Stents , Resultado do Tratamento
14.
Proc Math Phys Eng Sci ; 473(2203): 20170136, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28804257

RESUMO

The paper presents a model of a chiral multi-structure incorporating gyro-elastic beams. Floquet-Bloch waves in periodic chiral systems are investigated in detail, with the emphasis on localization and the formation of standing waves. It is found that gyricity leads to low-frequency standing modes and generation of stop-bands. A design of an earthquake protection system is offered here, as an interesting application of vibration isolation. Theoretical results are accompanied by numerical simulations in the time-harmonic regime.

15.
Proc Math Phys Eng Sci ; 473(2202): 20170015, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28690408

RESUMO

Closed circulatory systems display an exquisite balance between vascular elasticity and viscous fluid effects, to induce pulse-smoothing and avoid resonance during the cardiac cycle. Stents in the arterial tree alter this balance through stiffening and because a periodic structure is introduced, capable of interacting with the fluid in a complex way. While the former feature has been investigated, the latter received no attention so far. But periodic structures are the building blocks of metamaterials, known for their 'non-natural' behaviour. Thus, the investigation of a stent's periodic microstructure dynamical interactions is crucial to assess possible pathological responses. A one-dimensional fluid-structure interaction model, simple enough to allow an analytical solution for situations of interest involving one or two interacting stents, is introduced. It is determined: (i) whether or not frequency bands exist in which reflected blood pulses are highly increased and (ii) if these bands are close to the characteristic frequencies of arteries and finally, (iii) if the internal structure of the stent can sensibly affect arterial blood dynamics. It is shown that, while the periodic structure of an isolated stent can induce anomalous reflection only in pathological conditions, the presence of two interacting stents is more critical, and high reflection can occur at frequencies not far from the physiological values.

16.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28566512

RESUMO

A model for serpentine locomotion is derived from a novel perspective based on concepts from configurational mechanics. The motion is realized through the release of the elastic energy of a deformable rod, sliding inside a frictionless channel, which represents a snake moving against lateral restraints. A new formulation is presented, correcting previous results and including situations never analysed so far, as in the cases when the serpent's body lies only partially inside the restraining channel or when the body has a muscle relaxation localized in a small zone. Micromechanical considerations show that propulsion is the result of reactions tangential to the frictionless constraint and acting on the snake's body, a counter-intuitive feature in mechanics. It is also experimentally demonstrated that the propulsive force driving serpentine motion can be directly measured on a designed apparatus in which flexible bars sweep a frictionless channel. Experiments fully confirm the theoretical modelling, so that the presented results open the way to exploration of effects, such as variability in the bending stiffness or channel geometry or friction, on the propulsive force of snake models made up of elastic rods.


Assuntos
Simulação por Computador , Locomoção , Modelos Biológicos , Serpentes/fisiologia , Animais , Fenômenos Biomecânicos
17.
Sci Rep ; 7(1): 26, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28154420

RESUMO

For the first time, a design of a "deflecting elastic prism" is proposed and implemented for waves in a chiral medium. A novel model of an elastic lattice connected to a non-uniform system of gyroscopic spinners is designed to create a unidirectional wave pattern, which can be diverted by modifying the arrangement of the spinners within the medium. This important feature of the gyro-system is exploited to send a wave from a point of the lattice to any other point in the lattice plane, in such a way that the wave amplitude is not significantly reduced along the path. We envisage that the proposed model could be very useful in physical and engineering applications related to directional control of elastic waves.

18.
Sci Rep ; 6: 23929, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068339

RESUMO

Based on rigorous theoretical findings, we present a proof-of-concept design for a structured square cloak enclosing a void in an elastic lattice. We implement high-precision fabrication and experimental testing of an elastic invisibility cloak for flexural waves in a mechanical lattice. This is accompanied by verifications and numerical modelling performed through finite element simulations. The primary advantage of our square lattice cloak, over other designs, is the straightforward implementation and the ease of construction. The elastic lattice cloak, implemented experimentally, shows high efficiency.

19.
Proc Math Phys Eng Sci ; 472(2186): 20150658, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27118892

RESUMO

The paper presents new results on the localization and transmission of flexural waves in a structured plate containing a semi-infinite two-dimensional array of rigid pins. In particular, localized waves are identified and studied at the interface boundary between the homogeneous part of the flexural plate and the part occupied by rigid pins. A formal connection has been made with the dispersion properties of flexural Bloch waves in an infinite doubly periodic array of rigid pins. Special attention is given to regimes corresponding to standing waves of different types as well as Dirac-like points that may occur on the dispersion surfaces. A single half-grating problem, hitherto unreported in the literature, is also shown to bring interesting solutions.

20.
Proc Math Phys Eng Sci ; 471(2177): 20140746, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547089

RESUMO

This paper discusses the properties of flexural waves governed by the biharmonic operator, and propagating in a thin plate pinned at doubly periodic sets of points. The emphases are on the design of dispersion surfaces having the Dirac cone topology, and on the related topic of trapped modes in plates for a finite set (cluster) of pinned points. The Dirac cone topologies we exhibit have at least two cones touching at a point in the reciprocal lattice, augmented by another band passing through the point. We show that these Dirac cones can be steered along symmetry lines in the Brillouin zone by varying the aspect ratio of rectangular lattices of pins, and that, as the cones are moved, the involved band surfaces tilt. We link Dirac points with a parabolic profile in their neighbourhood, and the characteristic of this parabolic profile decides the direction of propagation of the trapped mode in finite clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...