Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(8): 10885-10896, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791086

RESUMO

"Clickable" organic electrochemical transistors (OECTs) allow the reliable and straightforward functionalization of electronic devices through the well-known click chemistry toolbox. In this work, we study various aspects of the click chemistry-based interface engineering of "clickable" OECTs. First, different channel architectures are investigated, showing that PEDOT-N3 films can properly work as a channel of the transistors. Furthermore, the Cu(I)-catalyzed click reaction of ethynyl-ferrocene is studied under different reaction conditions, endowing the spatial control of the functionalization. The strain-promoted and catalyst-free cycloaddition of a dibenzocyclooctyne-derivatized poly-l-lysine (PLL-DBCO) is also performed on the OECTs and validated by a fiber optic (FO)-SPR setup. The further immobilization of an azido-modified HD22 aptamer yields OECT-based biosensors that are employed for the recognition of thrombin. Finally, their performance is evaluated against previously reported architectures, showing higher density of the immobilized HD22 aptamer, and originating similar KD values and higher maximum signal change upon analyte recognition.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Eletrônica , Lisina , Oligonucleotídeos , Técnicas Eletroquímicas
2.
Chem ; 8(8): 2290-2300, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36003886

RESUMO

Microscopic motility is a property that emerges from systems of interacting molecules. Unraveling the mechanisms underlying such motion requires coupling the chemistry of molecules with physical processes that operate at larger length scales. Here, we show that photoactive micelles composed of molecular switches gate the autonomous motion of oil droplets in water. These micelles switch from large trans-micelles to smaller cis-micelles in response to light, and only the trans-micelles are effective fuel for the motion. Ultimately, it is this light that controls the movement of the droplets via the photochemistry of the molecules composing the micelles used as fuel. Notably, the droplets evolve positive photokinetic movement, and in patchy light environments, they preferentially move toward peripheral areas as a result of the difference in illumination conditions at the periphery. Our findings demonstrate that engineering the interplay between molecular photo-chemistry and microscopic motility allows designing motile systems rationally.

3.
Chem Mater ; 32(21): 9155-9166, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33191977

RESUMO

Surface-based biosensing devices benefit from a dedicated design of the probe layer present at the transducing interface. The layer architecture, its physicochemical properties, and the embedding of the receptor sites affect the probability of binding the analyte. Here, the enhancement of the probe density at the sensing interface by tuning the exponential growth regime of polyelectrolyte multilayers (PEMs) is presented. PEMs were made of poly-l-lysine (PLL), with appended clickable dibenzocyclooctyne (DBCO) groups and oligo(ethylene glycol) chains, and poly(styrene sulfonate) (PSS). The DNA probe loading and target hybridization efficiencies of the PEMs were evaluated as a function of the PLL layer number and the growth regime by a quartz crystal microbalance (QCM). An amplification factor of 25 in the target DNA detection was found for a 33-layer exponentially grown PEM compared to a monolayer. A Voigt-based model showed that DNA probe binding to the DBCO groups is more efficient in the open, exponentially grown films, while the hybridization efficiencies appeared to be high for all layer architectures. These results show the potential of such engineered gel-like structures to increase the detection of bio-relevant analytes in biosensing systems.

4.
Langmuir ; 36(16): 4272-4279, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32239946

RESUMO

The available active surface area and the density of probes immobilized on this surface are responsible for achieving high specificity and sensitivity in electrochemical biosensors that detect biologically relevant molecules, including DNA. Here, we report the design of gold-coated, silicon micropillar-structured electrodes functionalized with modified poly-l-lysine (PLL) as an adhesion layer to concomitantly assess the increase in sensitivity with the increase of the electrochemical area and control over the probe density. By systematically reducing the center-to-center distance between the pillars (pitch), denser micropillar arrays were formed at the electrode, resulting in a larger sensing area. Azido-modified peptide nucleic acid (PNA) probes were click-reacted onto the electrode interface, exploiting PLL with appended oligo(ethylene glycol) (OEG) and dibenzocyclooctyne (DBCO) moieties (PLL-OEG-DBCO) for antifouling and probe binding properties, respectively. The selective electrochemical sandwich assay formation, composed of consecutive hybridization steps of the target complementary DNA (cDNA) and reporter DNA modified with the electroactive ferrocene functionality (rDNA-Fc), was monitored by quartz crystal microbalance. The DNA detection performance of micropillared electrodes with different pitches was evaluated by quantifying the cyclic voltammetric response of the surface-confined rDNA-Fc. By decrease of the pitch of the pillar array, the area of the electrode was enhanced by up to a factor 10.6. A comparison of the electrochemical data with the geometrical area of the pillared electrodes confirmed the validity of the increased sensitivity of the DNA detection by the design of the micropillar array.


Assuntos
DNA/análise , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Peptídicos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA/genética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Ácidos Nucleicos Imobilizados/genética , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/genética , Polilisina/química , Silício/química
5.
ACS Appl Polym Mater ; 1(11): 3165-3173, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-32954353

RESUMO

The immobilization of biomolecules onto polymeric surfaces employed in the fabrication of biomedical and biosensing devices is generally a challenging issue, as the absence of functional groups in such materials does not allow the use of common surface chemistries. Here we report the use of modified poly-l-lysine (PLL) as an effective method for the selective modification of polymeric materials with biomolecules. Cyclic olefin polymer (COP), Ormostamp, and polydimethylsiloxane (PDMS) surfaces were patterned with modified PLLs displaying either biotin or maleimide functional groups. Different patterning techniques were found to provide faithful microscale pattern formation, including micromolding in capillaries (MIMIC) and a hydrogel-based stamping device with micropores. The surface modification and pattern stability were tested with fluorescence microscopy, contact angle and X-ray photoelectron spectroscopy (XPS), showing an effective functionalization of substrates stable for over 20 days. By exploiting the strong biotin-streptavidin interaction or the thiol-maleimide coupling, DNA and PNA probes were displayed successfully on the surface of the materials, and these probes maintained the capability to specifically recognize complementary DNA sequences from solution. The printing of three different PNA-thiol probe molecules in a microarray fashion allowed selective DNA detection from a mixture of DNA analytes, demonstrating that the modified PLL methodology can potentially be used for multiplexed detection of DNA sequences.

6.
Bioconjug Chem ; 29(12): 4110-4118, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30412384

RESUMO

Biosensors and materials for biomedical applications generally require chemical functionalization to bestow their surfaces with desired properties, such as specific molecular recognition and antifouling properties. The use of modified poly(l-lysine) (PLL) polymers with appended oligo(ethylene glycol) (OEG) and thiol-reactive maleimide (Mal) moieties (PLL-OEG-Mal) offers control over the presentation of functional groups. These reactive groups can readily be conjugated to, for example, probes for DNA detection. Here we demonstrate the reliable conjugation of thiol-functionalized peptide nucleic acid (PNA) probes onto predeposited layers of PLL-OEG-Mal and the control over their surface density in the preceding synthetic step of the PLL modification with Mal groups. By monitoring the quartz crystal microbalance (QCM) frequency shifts of the binding of complementary DNA versus the density of Mal moieties grafted to the PLL, a linear relationship between probe density and PLL grafting density was found. Cyclic voltammetry experiments using Methylene Blue-functionalized DNA were performed to establish the absolute probe density values at the biosensor surfaces. These data provided a density of 1.2 × 1012 probes per cm2 per % of grafted Mal, thus confirming the validity of the density control in the synthetic PLL modification step without the need of further surface characterization.


Assuntos
Técnicas Biossensoriais , DNA/química , Sondas Moleculares , Polilisina/química , Ácidos Nucleicos Peptídicos/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...