Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Comput Biol ; 15(7): e1007225, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323035

RESUMO

Exposure to the environmental toxin ß-methylamino-L-alanine (BMAA) is linked to amyotrophic lateral sclerosis (ALS), but its disease-promoting mechanism remains unknown. We propose that incorporation of BMAA into the ALS-linked protein Cu,Zn superoxide dismutase (SOD1) upon translation promotes protein misfolding and aggregation, which has been linked to ALS onset and progression. Using molecular simulation and predictive energetic computation, we demonstrate that substituting any serine with BMAA in SOD1 results in structural destabilization and aberrant dynamics, promoting neurotoxic SOD1 aggregation. We propose that translational incorporation of BMAA into SOD1 is directly responsible for its toxicity in neurodegeneration, and BMAA modification of SOD1 may serve as a biomarker of ALS.


Assuntos
Diamino Aminoácidos/farmacocinética , Diamino Aminoácidos/toxicidade , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Sítios de Ligação/genética , Biologia Computacional , Toxinas de Cianobactérias , Estabilidade Enzimática/genética , Humanos , Simulação de Dinâmica Molecular , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Modificação Traducional de Proteínas/efeitos dos fármacos , Modificação Traducional de Proteínas/genética , Estrutura Quaternária de Proteína , Superóxido Dismutase-1/genética
2.
Biochemistry ; 58(30): 3302-3313, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283187

RESUMO

Thymidylate synthase (TS) is a dimeric enzyme conserved in all life forms that exhibits the allosteric feature of half-the-sites activity. Neither the reason for nor the mechanism of this phenomenon is understood. We used a combined nuclear magnetic resonance (NMR) and molecular dynamics approach to study a stable intermediate preceding hydride transfer, which is the rate-limiting and half-the-sites step. In NMR titrations with ligands leading to this intermediate, we measured chemical shifts of the apoenzyme (lig0), the saturated holoenzyme (lig2), and the typically elusive singly bound (lig1) states. Approximately 40 amides showed quartet patterns providing direct NMR evidence of coupling between the active site and probes >30 Å away in the distal subunit. Quartet peak patterns have symmetrical character, indicating reciprocity in communicating the first and second binding events to the distal protomer. Quartets include key catalytic residues and map to the dimer interface ß-sheet, which also represents the shortest path between the two active sites. Simulations corroborate the coupling observed in solution in that there is excellent overlap between quartet residues and main-chain atoms having intersubunit cross-correlated motions. Simulations identify five hot spot residues, three of which lie at the kink in the unique ß-bulge abutting the active sites on either end of the sheet. Interstrand cross-correlated motions become more organized and pronounced as the enzyme progresses from lig0 to lig1 and ultimately lig2. Coupling in the apparently symmetrical complex has implications for half-the-sites reactivity and potentially resolves the paradox of inequivalent TS active sites despite the vast majority of X-ray structures appearing to be symmetrical.


Assuntos
Multimerização Proteica/fisiologia , Timidilato Sintase/química , Timidilato Sintase/metabolismo , Domínio Catalítico/fisiologia , Conformação Proteica em Folha beta/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
J Biol Chem ; 293(13): 4752-4766, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382719

RESUMO

Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas RGS/imunologia , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas RGS/genética , Tirosina/genética , Tirosina/metabolismo
4.
J Biol Chem ; 293(6): 2015-2028, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29255089

RESUMO

The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 µm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.


Assuntos
Substituição de Aminoácidos , Cálcio/metabolismo , Citosol/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Motivos de Aminoácidos , Cafeína/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
J Biol Chem ; 292(31): 12947-12958, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28584051

RESUMO

The type 1 ryanodine receptor (RyR1) mediates Ca2+ release from the sarcoplasmic reticulum to initiate skeletal muscle contraction and is associated with muscle diseases, malignant hyperthermia, and central core disease. To better understand RyR1 channel function, we investigated the molecular mechanisms of channel gating and ion permeation. An adequate model of channel gating requires accurate, high-resolution models of both open and closed states of the channel. To this end, we generated an open-channel RyR1 model using molecular simulations to pull Ca2+ through the pore constriction site of a closed-channel RyR1 structure determined at 3.8-Šresolution. Importantly, we find that our open-channel model is consistent with the RyR1 and cardiac RyR (RyR2) open-channel structures reported while this paper was in preparation. Both our model and the published structures show similar rotation of the upper portion of the pore-lining S6 helix away from the 4-fold channel axis and twisting of Ile-4937 at the channel constriction site out of the channel pore. These motions result in a minimum open-channel pore radius of ∼3 Šformed by Gln-4933, rather than Ile-4937 in the closed-channel structure. We also present functional support for our model by mutations around the closed- and open-channel constriction sites (Gln-4933 and Ile-4937). Our results indicate that use of ion-pulling simulations produces a RyR1 open-channel model, which can provide insights into the mechanisms of channel opening complementing those from the structural data.


Assuntos
Sinalização do Cálcio , Bicamadas Lipídicas/química , Modelos Moleculares , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Substituição de Aminoácidos , Animais , Cafeína/química , Cafeína/metabolismo , Cafeína/farmacologia , Agonistas dos Canais de Cálcio/química , Agonistas dos Canais de Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Glutamina/química , Células HEK293 , Humanos , Isoleucina/química , Ligantes , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rianodina/química , Rianodina/metabolismo , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Methods Mol Biol ; 1529: 227-241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27914054

RESUMO

Computational grafting of target residues onto existing protein scaffolds is a powerful method for the design of proteins with novel function. In the grafting method side chain mutations are introduced into a preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations that do not affect the protein structure or stability. To identify compatible structural motifs we use the Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability resulting from mutations. Mutations that increase the protein stability are more likely to maintain the protein structure and therefore produce the desired function. Together these tools provide effective methods for identifying existing templates and guiding further design experiments. The software tools for scaffold searching and design are available at http://dokhlab.org .


Assuntos
Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Proteínas , Bases de Dados de Proteínas , Modelos Moleculares , Mutação , Conformação Proteica , Estabilidade Proteica , Proteínas/química , Proteínas/genética , Software , Navegador
7.
Phys Rev Lett ; 115(10): 108103, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382705

RESUMO

Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.


Assuntos
Anestesia Geral , Estado de Consciência/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Vias Aferentes/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Humanos , Rede Nervosa/fisiologia , Tálamo/citologia , Tálamo/fisiologia
8.
Structure ; 23(6): 995-1004, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25960405

RESUMO

Structural rearrangements underlying functional transitions of pentameric ligand-gated ion channels (pLGICs) are not fully understood. Using (19)F nuclear magnetic resonance and electron spin resonance spectroscopy, we found that ELIC, a pLGIC from Erwinia chrysanthemi, expanded the extracellular end and contracted the intracellular end of its pore during transition from the resting to an apparent desensitized state. Importantly, the contraction at the intracellular end of the pore likely forms a gate to restrict ion transport in the desensitized state. This gate differs from the hydrophobic gate present in the resting state. Conformational changes of the TM2-TM3 loop were limited to the N-terminal end. The TM4 helices and the TM3-TM4 loop appeared relatively insensitive to agonist-mediated structural rearrangement. These results indicate that conformational changes accompanying functional transitions are not uniform among different ELIC regions. This work also revealed the co-existence of multiple conformations for a given state and suggested asymmetric conformational arrangements in a homomeric pLGIC.


Assuntos
Dickeya chrysanthemi/química , Canais Iônicos de Abertura Ativada por Ligante/química , Modelos Moleculares , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
9.
J Biol Chem ; 290(28): 17535-45, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25998124

RESUMO

Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.


Assuntos
Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Glicina/química , Células HEK293 , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Contração Muscular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
10.
J Med Chem ; 58(7): 2958-2966, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25790278

RESUMO

The human glycine receptors (hGlyRs) are chloride-selective ion channels that mediate inhibitory neurotransmission in the brain stem and spinal cord. They are also targets for compounds of potential use in analgesic therapies. Here, we develop a strategy to discover analgesic drugs via structure-based virtual screening based on the recently published NMR structure of the hGlyR-α1 transmembrane domain (PDB ID: 2M6I ) and the critical role of residue S296 in hGlyR-α1 potentiation by Δ(9)-tetrahydrocannabinol (THC). We screened 1549 FDA-approved drugs in the DrugBank database on an ensemble of 180 hGlyR-α1 structures generated from molecular dynamics simulations of the NMR structure of the hGlyR-α1 transmembrane domain in different lipid environments. Thirteen hit compounds from the screening were selected for functional validation in Xenopus laevis oocytes expressing hGlyR-α1. Only one compound showed no potentiation effects; seven potentiated hGlyR-α1 at a level greater than THC at 1 µM. Our virtual screening protocol is generally applicable to drug targets with lipid-facing binding sites.


Assuntos
Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Canabinoides/química , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação , Feminino , Lipídeos/química , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Ressonância Magnética Nuclear Biomolecular , Oócitos/efeitos dos fármacos , Dor/tratamento farmacológico , Conformação Proteica , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Xenopus laevis
11.
Biochim Biophys Acta ; 1848(1 Pt B): 307-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24680782

RESUMO

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular
12.
J Biol Chem ; 289(20): 13851-7, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24695730

RESUMO

The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.


Assuntos
Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
13.
Biochim Biophys Acta ; 1838(5): 1389-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24384062

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4ß2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9'. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4ß2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.


Assuntos
Anestésicos/química , Proteínas de Membrana/química , Receptor Nicotínico de Acetilcolina alfa7/química , Anestésicos/metabolismo , Animais , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Halotano/química , Halotano/metabolismo , Humanos , Ketamina/química , Ketamina/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica , Xenopus , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
14.
J Biol Chem ; 288(50): 35793-800, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24194515

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7ß2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in ß2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified ß2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, ß2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.


Assuntos
Anestésicos/química , Anestésicos/farmacologia , Isoflurano/química , Isoflurano/farmacologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sequência de Aminoácidos , Anestésicos/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Isoflurano/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Receptores Nicotínicos/química , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/química
15.
Structure ; 21(10): 1897-904, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23994010

RESUMO

Glycine receptors play a major role in mediating fast inhibitory neurotransmission in the spinal cord and brain stem, yet their high-resolution structures remain unsolved. We determined open-channel structures of the full-length transmembrane domain (TMD) of the human glycine receptor α1-subunit (hGlyR-α1) using nuclear magnetic resonance (NMR) spectroscopy and electron micrographs. hGlyR-α1 TMD spontaneously forms pentameric Cl(-)-conducting channels, with structures sharing overall topology observed in crystal structures of homologous bacterial and nematode pentameric ligand-gated ion channels (pLGICs). However, the mammalian hGlyR-α1 structures present several distinctive features, including a shorter, pore-lining TM2 helix with helical unwinding near the C-terminal end, a TM3 helical kink at A288 that partially overlaps with the homologous ivermectin-binding site in GluCl, and a highly dynamic segment between S267(15') of TM2 and A288 that likely affects allosteric modulations of channel function. Our structures provide additional templates for identifying potential drug targets in GlyRs and other mammalian pLGICs.


Assuntos
Receptores de Glicina/química , Cloretos/química , Microscopia Crioeletrônica , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Permeabilidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Glicina/agonistas , Receptores de Glicina/ultraestrutura , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...