RESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects synovial joints and that frequently involves extra-articular organs. A multiplicity of interleukins (IL) participates in the pathogenesis of RA, including IL-6, IL-1ß, transforming growth factor-beta (TGF-ß), and tumor necrosis factor (TNF)-α; immune cells such as monocytes, T and B lymphocytes, and macrophages; and auto-antibodies, mainly rheumatoid factor and anti-citrullinated protein antibodies (ACPAs). Skeletal muscle is also involved in RA, with many patients developing muscle wasting and sarcopenia. Several mechanisms are involved in the myopenia observed in RA, and one of them includes the effects of some interleukins and myokines on myocytes. Myostatin is a myokine member of the TGF-ß superfamily; the overproduction of myostatin acts as a negative regulator of growth and differentiates the muscle fibers, limiting their number and size. Recent studies have identified abnormalities in the serum myostatin levels of RA patients, and these have been found to be associated with muscle wasting and other manifestations of severe RA. This review analyzes recent information regarding the relationship between myostatin levels and clinical manifestations of RA and the relevance of myostatin as a therapeutic target for future research.
RESUMO
The present study focuses on the elaboration of magnetic nanocomposites by the in situ incorporation of magnetite (Fe3O4) nanoparticles (NPs) with spherical and nanoflower-like morphologies in graphitic carbon nitride (g-C3N4) sheets using two different synthetic routes. Nanomaterials are characterized by TEM, SEM, XRD, FTIR, BET, zetametry, vibrating sample magnetometry, and UV-vis absorption spectroscopy. The decoration of the carbon nitride matrix with the magnetic NPs enhanced optical and textural properties. The influence of the morphology of the magnetic NPs on the adsorptive and photocatalytic properties of the nanocomposites under different pH conditions (4.5, 6.9, and 10.6) was assessed from batch tests to remove methylene blue (MB) from aqueous solutions. In extreme pH conditions, the nanocomposites exhibited lower or equivalent MB removal capacity compared to the pure g-C3N4. However, at neutral medium, the nanocomposite with incorporated Fe3O4 nanoflowers showed a significantly higher removal efficiency (80.7%) due to the combination of a high adsorption capacity and a good photocatalytic activity in this pH region. The proposed nanocomposite is a promising alternative to remove cationic dyes from water by magnetic assistance, since no pH adjustment of the polluted effluent is required, reducing costs and environmental impact in the dyeing industry.
Assuntos
Azul de Metileno , Nanocompostos , Nitrilas , Poluentes Químicos da Água , Azul de Metileno/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Nitrilas/química , Adsorção , Purificação da Água/métodos , Corantes/química , Grafite/química , Compostos de NitrogênioRESUMO
Hypertension is one of the main risk factors related to cardiovascular mortality, being the levels of blood pressure (BP) related to a variety of personal, anthropometric, biochemical and psychological variables; however, the study evaluating the association of all these factors in systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a sample of relatively healthy subjects has not been performed. The aim of the study was to determine the main variables associated with SBP and DPB in a sample of relatively healthy subjects. A total of 171 participants were included, in which personal, anthropometric, positive and negative psychological variables and biochemical variables were measured. We observed that men showed higher levels of SBP and DBP than women, with more differences for SBP. Among the biochemical factors and SBP, we found that albumin and monocytes were positively correlated with it, while potassium, phosphorus and eosinophils were negatively correlated with it. Additionally, schooling was a constant variable negatively correlated with SBP in all samples (global, men and women). Among psychological variables, we observed that emotional perception was negatively correlated with SBP in men's and women's samples, while autonomy was positively correlated with SBP in the men's sample; however, their association was less when compared with the personal and biochemical variables included in the multivariate model. With regard to DBP, we observed that the biochemical variables, hemoglobin, sodium, uric acid and glucose, were positively correlated with DBP in the global sample, while chloride and BUN were negatively correlated with it. In addition, many personal and behavioral variables, including BMI, age and smoking consumption frequency, also correlated with DBP in the global sample. In conclusion, BP is affected by different factors, and these affect each sex differently.
RESUMO
Oxidative stress (OS) has been linked to cell damage and chronic disease development; however, the study of psychological factors related with OS has been limited, as has its relationship with biochemical and personal variables. Therefore, the aim of this study was to evaluate the association between a wide variety of personal, psychological, and biochemical factors with OS in a sample of healthy Mexican people. A total of 134 participants, from which 70 (52%) were women, without known chronic conditions were included in the study, and the molecule 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also measured as a marker of OS. We observed in the multivariate analysis of the whole sample that depressive symptoms (measured with CES-D scale) were the only psychological variable significantly associated (positively) with 8-OHdG. In addition, the following sociodemographic variables were associated with 8-OHdG: age, schooling (positively correlated), and the frequency of vitamins/antioxidant consumption (negatively correlated). The biochemical variables of erythrocytes in urine and amylase were positively correlated with 8-OHdG, while glucose was negatively correlated with it. Additional biochemical variables were associated in the multivariate analysis of each sex, including the positive correlation of LDL-cholesterol, LDH enzyme, lymphocytes, and the negative correlation of phosphorus and eosinophils in women's samples, as well as the positive correlation of potassium, uric acid, and leucocytes in urine and the negative correlation of erythrocytes and lipase in the men's samples. In conclusion, depression was the only psychological variable positively correlated with 8-OHdG after adjusting for confounders, and new associations with biochemical variables were found with some differences between sexes.
RESUMO
Multiple sclerosis (MS) is a chronic and demyelinating disease with an autoimmune origin, which leads to neurodegeneration and progressive disability. Approximately 30 to 50% of patients do not respond optimally to disease-modifying therapies (DMTs), and therapeutic response may be influenced by genetic factors such as genetic variants. Therefore, our study aimed to investigate the association of the HLA-DRB1*0403 genetic variant and therapeutic response to DMTs in MS. We included 105 patients with MS diagnosis. No evidence of disease activity based on the absence of clinical relapse, disability progression or radiological activity (NEDA-3) was used to classify the therapeutic response. Patients were classified as follows: (a) controls: patients who achieved NEDA-3; (b) cases: patients who did not achieve NEDA-3. DNA was extracted from peripheral blood leukocytes. HLA-DRB1*0403 genetic variant was analyzed by quantitative polymerase chain reaction (qPCR) using TaqMan probes. NEDA-3 was achieved in 86.7% of MS patients treated with DMTs. Genotype frequencies were GG 50.5%, GA 34.3%, and AA 15.2%. No differences were observed in the genetic variant AA between patients who achieved NEDA-3 versus patients who did not achieve NEDA-3 (48.7% vs. 43.1%, p = 0.6). We concluded that in Mexican patients with MS, HLA-DRB1*0403 was not associated with the therapeutic response to DMTs.
Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Cadeias HLA-DRB1/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , GenótipoRESUMO
STAT4 plays an important role in disease activity in SLE patients. STAT4 particles have the capacity to activate the transcription of genes associated with the production of TH1 and Th17 lymphocytes, with a greater predominance on the production of IFN-γ and IL-17A. The presence of variants in STAT4 genes has a major impact on the generation of autoimmunity. However, there are few studies evaluating the impact of these variants on the production of proinflammatory cytokines such as IFN-γ and IL-17A. Methods-A case-control study was carried out with 206 Mexican mestizo patients residing in Western Mexico with a diagnosis of SLE and a group of 80 patients without autoimmune diseases was captured to determine the cut-off point for high IFN-γ levels. In this study, SLE patients with high IFN-γ levels were considered as cases (cut-off > 15.6 pg/mL), and SLE patients with normal IFN-γ levels were considered as controls (cut-off ≤ 15.6 pg/mL). Disease activity was identified from the systemic lupus erythematosus disease activity index (SLEDAI). For the determination of levels of cytokines IFN-γ, IL-12, and IL17A, commercial ELISA kits were used. Genotyping of STAT4 rs7574865 (G > T) was performed by quantitative polymerase chain reaction (qPCR) using TaqMan probes. Results-The patients with SLE had a median age of 45 years with a range of disease duration from 4 years to 18 years; 45.6% were identified as having disease activity. In this sample, we identified a high IFN-γ prevalence of 35.4%. The levels of IFN-γ were higher in the patients with genotype TT than GG. We found that TT genotype conferred a higher risk of high IFN-γ when compared to the GG and GT genotypes. Conclusions-In this study, we identified that the polymorphic genotype TT of the STAT4 gene rs7574865 polymorphism is associated with increased levels of IFN-γ. However, its strength of association was weak, so complementary studies are needed to evaluate its impact on SLE patients.
Assuntos
Doenças Autoimunes , Interferon gama , Lúpus Eritematoso Sistêmico , Fator de Transcrição STAT4 , Pré-Escolar , Humanos , Alelos , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Estudos de Casos e Controles , Citocinas/genética , Predisposição Genética para Doença , Interferon gama/genética , Interleucina-17/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT4/genéticaRESUMO
The degradation of mesoporous silica nanoparticles (MSNs) in the biological milieu due to silica hydrolysis plays a fundamental role for the delivery of encapsulated drugs and therapeutics. However, little is known on the evolution of the pore arrangement in the MSNs in biologically relevant conditions. Small Angle X-ray scattering (SAXS) studies were performed on unmodified and PEGylated MSNs with a MCM-48 pore structure and average sizes of 140 nm, exposed to simulated body fluid solution (SBF) at pH 7.4 for different time intervals from 30 min to 24 h. Experiments were performed with silica concentrations below, at and over 0.14 mg/mL, the saturation concentration of silica in water at physiological temperature. At silica concentrations of 1 mg/mL (oversaturation), unmodified MSNs show variation in interpore distances over 6 h exposure to SBF, remaining constant thereafter. A decrease in radius of gyration is observed over the same time. Mesoporosity and radius of gyration of unmodified MSNs remain then unchanged up to 24 h. PEGylated MSNs at 1 mg/mL concentration show a broader diffraction peak but no change in the position of the peak is observed following 24 h exposure to SBF. PEGylated MSNs at 0.01 mg/mL show no diffraction peaks already after 30 min exposure to SBF, while at 0.14 mg/mL a small diffraction peak is present after 30 min exposure but disappears after 1 h.
RESUMO
In this work, monodisperse silica-coated gold nanoparticles (NPs) were synthesized and used for obtaining aqueous colloidal dispersions with an optimum relationship between colloidal stability and photothermal activity. The idea behind this design was to produce systems with the advantages of the presence of a silica shell (biocompatibility, potential for surface modification, and protecting effect) with a minimal loss of optical and thermal properties. With this aim, the photothermal properties of NPs with silica shells of different thicknesses were analyzed under conditions of high radiation extinction. By using amorphous, gel-like silica coatings, thicknesses higher than 40 nm could be obtained without an important loss of the light absorption capacity of the colloids and with a significant photothermal response even at low NP concentrations. The effects produced by changes in the solvent and in the NP concentration were also analyzed. The results show that the characteristics of the shell control both, the photothermal effect and the optical properties of the colloidal dispersions. As the presence of a silica shell strongly enhances the possibilities of adding cargo molecules or probes, these colloids can be considered of high interest for biomedical therapies, sensing applications, remote actuation, and other technological applications.
Assuntos
Nanopartículas Metálicas , Nanoconchas , Coloides/química , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , SuspensõesRESUMO
Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.
Assuntos
Curcumina , Nanopartículas , Animais , Portadores de Fármacos , Lipídeos , Lipossomos , Camundongos , Nanopartículas/toxicidade , Tamanho da PartículaRESUMO
The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-ß2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-ß2 gene expression.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Neoplasias Peritoneais/tratamento farmacológicoRESUMO
The immune system plays a key role in the protective response against oral cancer; however, the tumor microenvironment (TME) impairs this anti-cancer response by modulating T helper (Th) responses and promoting an anti-inflammatory environment. Regulatory T cells (Tregs) and Th2 effector cells (Teff) are associated with poor prognosis in oral squamous cell carcinoma (OSCC). However, the main immunomodulatory mechanisms associated with the enrichment of these subsets in OSCC remain unknown. We characterized Th-like lineages in Tregs and Teff and evaluated immunomodulatory changes induced by the TME in OSCC. Our phenotypic data revealed a higher distribution of tumour-infiltrating CCR8+ and Th2-like Treg in OSCC compared with non-malignant samples, whereas the percentages of Th1 cells were reduced in cancer. We then analyzed the direct effect of the TME by exposing T cell subsets to cancer secretomes and observed the OSCC secretome induced CCR8 expression and reduced cytokine production from both subsets. Transcriptomic analysis showed that the co-culture with OSCC secretome induced several gene changes associated with the vitamin D (VitD) signaling pathway in T cells. In addition, proteomic analysis identified the presence of several proteins associated with prostaglandin E2 (PGE2) production by rapid membrane VitD signaling and a reduced presence of the VitD binding protein. Thus, we analyzed the effect of VitD and PGE2 and observed that VitD promotes a regulatory Th2-like response with CCR8 expression whilst PGE2 also modulated CCR8 but inhibited cytokine production in combination with VitD. Finally, we evaluated the presence of CCR8 ligand in OSCC and observed increased chemokine CCL18, which was also able to upregulate CCR8 in activated Th cells. Overall, our data showed the immunomodulatory changes induced by the TME involving CCR8 expression and regulatory Th2 phenotypes, which are associated with PGE2 mediated VitD signaling pathway and CCL18 expression in OSCC.
Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Imunomodulação , Neoplasias Bucais/imunologia , Proteínas de Neoplasias/imunologia , Receptores CCR8/imunologia , Transdução de Sinais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Microambiente Tumoral/imunologia , Vitamina D/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T Reguladores/patologia , Células Th2/patologiaRESUMO
Aim: To investigate the effect of liposomes containing the classical cytotoxic drugs paclitaxel and doxorubicin (Lipo-Pacli/Dox), against a metastatic breast cancer model. We also investigated if Lipo-Pacli/Dox was capable of reverting the tolerogenic environment of metastatic lesions. Materials & methods: Immunogenic cell death induction by the Pacli/Dox combination was assessed in vitro. Antitumor activity and in vivo safety of Lipo-Pacli/Dox were evaluated using a 4T1 breast cancer mouse model Results: Lipo-Pacli/Dox, with a size of 189 nm and zeta potential of -5.01 mV, promoted immune system activation and partially controlled the progression of pulmonary metastasis. Conclusion: Lipo-Pacli/Dox was useful to control both primary tumor and lung metastasis in breast cancer (4T1) mice model. Additionally, Lipo-Pacli/Dox acts as an immunological modulator for this metastatic breast cancer model.
Assuntos
Lipossomos , Neoplasias Pulmonares , Animais , Antibióticos Antineoplásicos , Linhagem Celular Tumoral , Doxorrubicina , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel , PrognósticoRESUMO
This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.
RESUMO
This study aimed to evaluate the effects of an intratesticular injection of silver nanoparticles (AgNPs) on reproductive parameters and health of rats, and to evaluate the AgNPs biodistribution in order to develop a nanotechnological contraceptive agent for male animals. Treated animals received 220 µL of AgNPs solution (0.46 µg-Ag/ml) in each testicle and were euthanized: seven, 14, 28, and 56 days after injection. A significant decrease (p < 0.05) in the percentage of motile sperm in D7 (8.8%) was observed, comparing to the control (73.3%), D14 (86.0%), D28 (68.2%), and D56 (90.0%) groups. D7 group also presented a decrease (p < 0.05) in the percentage of normal spermatozoa. Additionally, D7 group showed an increase (p < 0.05) in abnormal midpiece and sperm head morphology compared to the Control group. Seminiferous tubules presented all germline cell types and spermatozoa for all groups. However, D7 group did not present spermatozoa in the epididymis, whereas some spermatozoa and cellular debris were visible in D14 and D28 groups. All animals presented hematological parameters, creatinine, and alanine aminotransferase values within the normal limits for Wistar rats. The percentage of silver found in the liver was always higher than in the other organs analyzed. A pioneering mathematical model is proposed, from which the half-life time of silver in the liver (17 days), spleen (23 days), lungs (30 days), and kidneys (35 days) was extracted. In conclusion, some acute and severe toxic effects were observed in sperm cells following intratesticular injection of AgNPs, although these effects were reversible. No adverse effects to general animal health were observed.
Assuntos
Nanopartículas Metálicas/toxicidade , Reprodução/efeitos dos fármacos , Prata/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Alanina Transaminase/metabolismo , Animais , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Ratos , Ratos Wistar , Prata/administração & dosagem , Prata/farmacocinética , Espermatozoides/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Testículo/metabolismo , Distribuição TecidualRESUMO
Negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels undergo size changes in response to changes in temperature and pH. Complexation of these microgels with positively charged polyelectrolytes can greatly affect their physical properties and their capacity for encapsulating active molecules. Here we study the interaction between (P(NIPAm-co-MAA)) microgels and a model positively charged polyelectrolyte, poly allylamine hydrochloride (PAH), with different molecular weights. Experiments were conducted at temperatures below and above the lower critical solution temperature (LCST) of the microgel (30-32 °C), at 20 and 40 °C, respectively, and for PAH at molecular weights of 15, 50, and 140 kDa. Below the LCST, dynamic light scattering and zeta potential measurements with molecular simulation show that for the 15 kDa PAH there is preferential accumulation of PAH inside the microgel, whereas for the higher molecular weight PAH, the polyelectrolyte deposits mainly on the microgel surface. Above the LCST, PAH is preferentially located on the surface of the microgels for all molecular weights studied as a result of charge segregation in the hydrogels. Confocal scanning laser microscopy and flow cytometry were used to quantify rhodamine labelled PAH associated with the microgel. Isothermal titration calorimetry studies give insight into the thermodynamics of the interaction of PAH with the hydrogels, and how this interaction is affected by the molecular weight of PAH. Finally, microgels with encapsulated doxorubicin were exposed to PAH, revealing that the drug is displaced from the microgel by the PAH chains.
RESUMO
The interaction of polyamine poly(allylamine hydrochloride) with Na3PO4, Na4P2O7, Na5P3O10, Na6P6O18, and (NaPO3)26 salts and the formation of polyamine phosphate nanoparticles (PANs) are studied here. Dynamic light scattering, isothermal titration calorimetry (ITC), electrophoretical mobility measurements, atomic force microscopy, and transmission electron microscopy are used to explore the formation, stability, and pH sensitivity of PANs. An optimal concentration for PAN formation is found for each phosphate salt in terms of the most stable size and lowest polydispersity index of the nanoparticles. The minimal concentration of phosphate ions for PAN formation decreases with the increasing number of phosphate groups per phosphate salt. ITC measurements show that all polyphosphates display a characteristic endothermic peak, which is not present when monophosphates are used for PAN formation. pH stability of PANs depends on the type of phosphate salt. PANs formed with small phosphates show a small window of stability with pH from 8 to 9, while those formed with long phosphates are stable in more acidic pH environments. Our findings open multiple possibilities for fine-tuning the pH sensitivity of PANs by varying phosphate salts for potential applications in drug delivery.
RESUMO
In this work, we describe the preparation and characterization of highly magnetizable chloromethylated polystyrene-based nanocomposite beads. For synthesis optimization, acid-resistant core-shelled maghemite (γ-Fe2O3) nanoparticles are coated with sodium oleate and directly incorporated into the organic medium during a suspension polymerization process. A crosslinking agent, ethylene glycol dimethacrylate, is used for copolymerization with 4-vinylbenzyl chloride to increase the resistance of the microbeads against leaching. X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and optical microscopy are used for bead characterization. The beads form a magnetic composite consisting of â¼500 nm-sized crosslinked polymeric microspheres, embedding â¼8 nm γ-Fe2O3 nanoparticles. This nanocomposite shows large room temperature magnetization (â¼24 emu/g) due to the high content of maghemite (â¼45 wt %) and resistance against leaching even in acidic media. Moreover, the presence of superficial chloromethyl groups is probed by Fourier transform infrared and X-ray photoelectron spectroscopy. The nanocomposite beads displaying chloromethyl groups can be used to selectively remove aminated compounds that are adsorbed on the beads, as is shown here for the molecular separation of 4-aminobenzoic acid from a mixture with benzoic acid. The high magnetization of the composite beads makes them suitable for in situ molecular separations in environmental and biological applications.
RESUMO
Introduction: Aspergillosis is the second most frequent opportunistic fungal infection of the pa-ranasal sinuses. It primarily affects the maxillary sinus and occurs mainly in immunocompromi-sed individuals. Infection is caused by inhalation of spores or by an oro-sinusal communication. Aspergillosis is classified into an invasive and non-invasive form or Aspergilloma, which usually affects immunocompetent patients. Violaceous lesions, ulcers, necrosis and tissue destruction can be manifested clinically. Patients may experience pain, paresthesias, increases in the vo-lume of purulent or bloody nasal discharge and congestion. Case report: A 62-year-old female patient, immunocompetent, with a condition evolving for about six years. Condition began after a dental extraction, and consisted of absence of scarring and recurrent episodes of symptoma-tology suggestive of maxillary sinusitis with poor response to antibiotics. The patient was referred to the maxillofacial care unit, presenting an increase of volume in the right genial region, pain and paraesthesia of infraorbital region. The CT scan showed the presence of a radiopaque foreign body in the right maxillary sinus. A surgical procedure was carried out using the Caldwe-ll-Luc technique and biopsy; the case was diagnosed with Aspergillosis. The patient was treated without antifungal therapy because she had a good immune status. Conclusion: Aspergilloma is the most common form of Aspergillosis in immunocompetent individuals. It is usually diagnosed late, as its clinical picture is similar to bacterial sinusitis. In most cases, patients respond well to surgical treatment, and systemic antifungal therapy is not necessary.
Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Aspergilose/cirurgia , Aspergilose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Sinusite Maxilar/cirurgia , Hospedeiro ImunocomprometidoRESUMO
The reaction of 2-aminonicotinaldehyde with 2- or 4-methoxyacetophenone in basic media leads to the new ligands 2-(4-methoxyphenyl)-1,8-naphthyridine and 2-(2-methoxyphenyl)-1,8-naphthyridine, respectively, in high yield. The reaction of these naphthyridine derivatives with [RuCl2(CO)2]n leads to the respective complexes cis-dicarbonyldichloridobis[2-(4-methoxyphenyl)-1,8-naphthyridine-κN8]ruthenium(II) and cis-dicarbonyldichloridobis[2-(2-methoxyphenyl)-1,8-naphthyridine-κN8]ruthenium(II), both [RuCl2(C15H12N2O)2(CO)2], in good yield. Both ruthenium(II) complexes display a slightly distorted octahedron with two cis carbonyl, two cis chloride and two cis naphthyridine ligands, the latter coordinated in a monodentate fashion through the N atom in the 8-position. Both complexes exhibit a moderate catalytic activity in the hydrogen-transfer reaction from propan-2-ol to acetophenone in the presence of a base, with 100% selectivity.
RESUMO
Remotely assisted drug delivery by means of magnetic biopolymeric nanoplatforms has been utilized as an important tool to improve the delivery/release of hydrophobic drugs and to address their low cargo capacity. In this work, MnFe2O4 magnetic nanoparticles (MNPs) were synthesized by thermal decomposition, coated with citrate and then functionalized with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers, with chitosan as polycation and sodium alginate as polyanion. Simultaneous conductimetric and potentiometric titrations were employed to optimize the LbL deposition and to enhance the loading capacity of nanoplatforms for curcumin, a hydrophobic drug used in cancer treatment. ~200â¯nm sized biopolymer platforms with ~12â¯nm homogeneously embedded MNPs were obtained and characterized by means of XRD, HRTEM, DLS, TGA, FTIR, XPS and fluorescence spectroscopy techniques to access structural, morphological and surface properties, to probe biopolymer functionalization and to quantify drug-loading. Charge reversals (±30â¯mV) after each deposition confirmed polyelectrolyte adsorption and a stable LbL assembly. Magnetic interparticle interaction was reduced in the biopolymeric structure, hinting at an optimized performance in magnetic hyperthermia for magneto-assisted drug release applications. Curcumin was encapsulated, resulting in an enhanced payload (~100⯵g/mg). Nanocytotoxicity assays showed that the biopolymer capping enhanced the biocompatibility of nanoplatforms, maintaining entrapped curcumin. Our results indicate the potential of synthesized nanoplatforms as an alternative way of remotely delivering/releasing curcumin for medical purposes, upon application of an alternating magnetic field, demonstrating improved efficiency and reduced toxicity.