Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-16872856

RESUMO

We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fosfolipídeos/metabolismo , Salmo salar/metabolismo , Sulfetos/farmacologia , Animais , Esterificação , Ácidos Graxos Ômega-6/metabolismo , Hepatócitos/efeitos dos fármacos , Oxirredução , Salmo salar/crescimento & desenvolvimento , Temperatura
2.
Lipids ; 40(7): 709-17, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16196422

RESUMO

Atlantic salmon were fed fish meal-based diets supplemented with either 100% fish oil (FO) or 100% rapeseed oil (RO) from an initial weight of 85 g to a final average weight of 280 g. The effects of these diets on the capacity of Atlantic salmon hepatocytes to elongate, desaturate, and esterify [1-14C] 18:1n-9 and the immediate substrates for the delta5 desaturase, [1-14C] 20:3 n-6 and [1-14C] 20:4n-3, were investigated. Radiolabeled 18:1n-9 was mainly esterified into cellular TAG, whereas the more polyunsaturated FA, [1-14C] 20:3n-6 and [1-14C] 20:4n-3, were primarily esterified into cellular PL. More of the elongation product, [1-14C] 20:1n-9, was produced from 18:1n-9 and more of the desaturation and elongation products, 22:5n-6 and 22:6n-3, were produced from [1-14C]20:3n-6 and [1-14C] 20:4n-3, respectively, in RO hepatocytes than in FO hepatocytes. Further, we studied whether increased addition of [1-14C]18:1n-9 to the hepatocyte culture media would affect the capacity of hepatocytes to oxidize 18:1n-9 to acid-soluble products and CO2. An increase in exogenous concentration of 18:1 n-9 from 7 to 100 microM resulted in a nearly twofold increase in the amount of 18:1n-9 that was oxidized. The conversion of 20:4n-3 and 20:3n-6 to the longer-chain 22:6n-3 and 22:5n-6 was enhanced by RO feeding in Atlantic salmon hepatocytes. The increased capacity of RO hepatocytes to produce 22:6n-3 was, however, not enough to achieve the levels found in FO hepatocytes. Our data further showed that there were no differences in the hepatocyte FA oxidation capacity and the lipid deposition of carcass and liver between the two groups.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Hepatócitos/metabolismo , Óleos de Plantas/administração & dosagem , Animais , Ácidos Graxos Monoinsaturados , Comportamento Alimentar , Oxirredução , Óleo de Brassica napus , Salmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...