Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26415125

RESUMO

Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment.


Assuntos
Fluorocarbonos/química , Microscopia Acústica/métodos , Ultrassonografia/métodos , Microbolhas , Imagens de Fantasmas , Transdutores
2.
J Ther Ultrasound ; 3: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045964

RESUMO

BACKGROUND: During high-intensity focused ultrasound (HIFU) surgical procedures, there is a need to rapidly ablate pathological tissue while minimizing damage to healthy tissue. Current techniques are limited by relatively long procedure times and risks of off-target heating of healthy tissue. One possible solution is the use of microbubbles, which can improve the efficiency of thermal energy delivery during HIFU procedures. However, microbubbles also suffer from limitations such as low spatial selectivity and short circulation time in vivo. In this study, the use of a dual-perfluorocarbon nanodroplet that can enhance thermal ablation, yet retains high spatial selectivity and circulation half-life, was evaluated in vivo and compared to traditional microbubble agents during HIFU ablations of rat liver. METHODS: High-intensity focused ultrasound (1.1 MHz, 4.1 MPa, 15-s continuous wave) was applied to rat liver in vivo, and heating was monitored during sonication by magnetic resonance thermometry. Thermometry data were analyzed to quantify temperature rise and ablated area, both at the target and prefocally, for HIFU applied 5, 15, or 95 min after intravenous injection of either nanodroplet or microbubble agents. Sham control experiments (no injected agents) were also performed. RESULTS: At all three time points, nanodroplets significantly enhanced thermal delivery to the target, achieving temperatures 130 % higher and ablated areas 30 times larger than no-agent control sonications. Nanodroplets did not significantly enhance off-target surface heating. Microbubbles also resulted in significantly greater thermal delivery, but heating was concentrated at the proximal surface of the animal, causing skin burns. Furthermore, microbubbles resulted in lower thermal delivery to the desired target than even the control case, with the notable exception of the 95-min time point. CONCLUSIONS: Results indicate that the nanodroplet formulation studied here can substantially increase thermal delivery at the acoustic focus while avoiding prefocal heating. In contrast, microbubbles resulted in greater prefocal heating and less heating at the target. Furthermore, nanodroplets are sufficiently stable to enhance HIFU ablation in vivo for at least 1.5 h after injection. The use of a dual-perfluorocarbon nanodroplet formulation as described herein could substantially reduce HIFU procedure times without increasing the risk of skin burns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...