Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 239: 115863, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056285

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used to study the hydrolysis of tenofovir disoproxil fumarate (TDF) to tenofovir monosoproxil (TM) within an oral compressed tablet. The ToF-SIMS images displayed a heterogenous distribution of the matrix components. Evaluation of the TM distribution revealed that it was primarily co-localized with areas of higher excipient concentration pointing toward excipient driven degradation. To support these observations, a compatibility study of TDF with each tablet component was performed via liquid chromatography. The ToF-SIMS imaging and compatibility study indicated that the excipient, Avicel® PH-102, was the primary driver of TM formation in the tablet. The hydrolysis degradation mechanism within the tablet is further rationalized through discussion of chemical and physical properties of the matrix components. The sum of this work demonstrates a new analytical workflow for probing and understanding matrix driven degradation in oral compressed tablets utilizing ToF-SIMS imaging.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Tenofovir/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Excipientes/química , Espectrometria de Massa de Íon Secundário , Comprimidos/química , Infecções por HIV/tratamento farmacológico
2.
Methods Enzymol ; 663: 41-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168797

RESUMO

Antimicrobial peptides (AMPs) are host defense peptides with a range of functions/activities/modes of action that are ubiquitously expressed across all forms of life. Continued discovery of novel AMPs presents exciting opportunities to address evolving resistance to existing treatments in multiple fields, including agricultural pathogens/pests as well as antimicrobial and chemotherapeutics for human health. However, typical discovery methods including bioassay-guided fractionation and genome mining generally lack the capacity for robust AMP discovery in non-model/unsequenced organisms. PepSAVI-MS (Statistically guided bioactive peptides prioritized via mass spectrometry) was developed as an AMP discovery approach that addresses some of the limitations associated with these standard methods. PepSAVI-MS is a multi-pronged pipeline that includes peptide library creation, bioactivity screening, LC-MS analysis, and statistical modeling for putative AMP identification. The original implementation of PepSAVI-MS outlined strategies for the fractionation of plant extracts with strong cation exchange chromatography (SCX). Herein, we elaborate on recent improvements to peptide library creation through the use of orthogonal fractionation methods, specifically crude SCX chromatography and reversed-phase liquid chromatography (RPLC). This optimization of the "peptide library creation" step has demonstrated improvements for processing and AMP identifications via PepSAVI-MS.


Assuntos
Peptídeos Antimicrobianos , Biblioteca de Peptídeos , Humanos , Cromatografia Líquida , Cromatografia de Fase Reversa , Espectrometria de Massas
3.
Food Chem ; 377: 131959, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34995961

RESUMO

Amaranthus hypochondriacus is a nutritious alternative grain native to Central and South America. Increased interest in the impact of A. hypochondriacus on the human body has driven characterization of bioactive secondary metabolites. The seeds are known to contain bioactive small molecules but little is known regarding endogenous peptides. Cysteine-rich peptides (CRPs) in foodstuffs are particularly relevant because they are stabilized by disulfide bonds enhancing resistance to digestion. Here, in silico predictions, proteomics, and simulated gastrointestinal digestions are leveraged to identify digestion resistant CRPs within A. hypochondriacus seeds. Thirteen in silico predicted CRPs were detected in a seed extract providing evidence for the translation of five CRP families. Mature forms of six CRPs were characterized via top-down proteomics revealing multiple post-translational modifications. All six peptides demonstrated resistance to simulated gastrointestinal digestion, suggesting that A. hypochondriacus CRPs may exhibit bioactivity after consumption and should be prioritized for further characterization.


Assuntos
Amaranthus , Cisteína , Humanos , Peptídeos , Proteínas de Plantas/genética , Sementes
4.
Molecules ; 26(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885884

RESUMO

Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80-100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3-10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.


Assuntos
Peptídeos Antimicrobianos/análise , Linho/química , Sementes/química , Sesamum/química , Trifolium/química , Sequência de Aminoácidos , Espectrometria de Massas , Modelos Moleculares , Proteínas de Plantas/análise , Proteômica
5.
BMC Microbiol ; 21(1): 110, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845758

RESUMO

BACKGROUND: Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. RESULTS: Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. CONCLUSIONS: This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Assuntos
Amaranthus/química , Defensinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteoma/efeitos dos fármacos , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Quelantes de Ferro/farmacologia
6.
J Nat Prod ; 84(2): 444-452, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33576231

RESUMO

Traditional medicinal plants are rich reservoirs of antimicrobial agents, including antimicrobial peptides (AMPs). Advances in genomic sequencing, in silico AMP predictions, and mass spectrometry-based peptidomics facilitate increasingly high-throughput bioactive peptide discovery. Herein, Amaranthus tricolor aerial tissue was profiled via MS-based proteomics/peptidomics, identifying AMPs predicted in silico. Bottom-up proteomics identified seven novel peptides spanning three AMP classes including lipid transfer proteins, snakins, and a defensin. Characterization via top-down peptidomic analysis of Atr-SN1, Atr-DEF1, and Atr-LTP1 revealed unexpected proteolytic processing and enumerated disulfide bonds. Bioactivity screening of isolated Atr-LTP1 showed activity against the high-risk ESKAPE bacterial pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter cloacae). These results highlight the potential for integrating AMP prediction algorithms with complementary -omics approaches to accelerate characterization of biologically relevant AMP peptidoforms.


Assuntos
Amaranthus/química , Antibacterianos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Sequência de Aminoácidos , Antibacterianos/isolamento & purificação , Espectrometria de Massas , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Proteômica
7.
Nat Prod Rep ; 38(3): 489-509, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32929442

RESUMO

Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.


Assuntos
Aminoácidos/análise , Produtos Biológicos/química , Espectrometria de Massas/métodos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Alquilação , Aminoácidos/química , Peptídeos Catiônicos Antimicrobianos/química , Ciclização , Glicosilação , Processamento de Proteína Pós-Traducional , Estereoisomerismo
8.
J Nat Prod ; 82(10): 2744-2753, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557021

RESUMO

Traditional medicinal plants are a rich source of antimicrobials; however, the bioactive peptide constituents of most ethnobotanical species remain largely unexplored. Herein, PepSAVI-MS, a mass spectrometry-based peptidomics pipeline, was implemented for antimicrobial peptide (AMP) discovery in the medicinal plant Amaranthus tricolor. This investigation revealed a novel 1.7 kDa AMP with strong activity against Escherichia coli ATCC 25922, deemed Atr-AMP1. Initial efforts to determine the sequence of Atr-AMP1 utilized chemical derivatization and enzymatic digestion to provide information about specific residues and post-translational modifications. EThcD (electron-transfer/higher-energy collision dissociation) produced extensive backbone fragmentation and facilitated de novo sequencing, the results of which were consistent with orthogonal characterization experiments. Additionally, multistage HCD (higher-energy collisional dissociation) facilitated discrimination between isobaric leucine and isoleucine. These results revealed a positively charged proline-rich peptide present in a heterogeneous population of multiple peptidoforms, possessing several post-translational modifications including a disulfide bond, methionine oxidation, and proline hydroxylation. Additional bioactivity screening of a simplified fraction containing Atr-AMP1 revealed activity against Staphylococcus aureus LAC, demonstrating activity against both a Gram-negative and a Gram-positive bacterial species unlike many known short chain proline-rich antimicrobial peptides.


Assuntos
Amaranthus/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Espectrometria de Massas/métodos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...