Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Negl Trop Dis ; 17(9): e0011412, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747922

RESUMO

BACKGROUND: Scrub typhus is a potentially fatal acute febrile illness caused by bacteria in the genus Orientia. Though cases have been documented, a comprehensive body of evidence has not previously been compiled to give an overview of scrub typhus in Indonesia. This study aimed to address this key knowledge gap by mapping and ranking geographic areas based on existing data on the presence or absence of the pathogen in humans, vectors, and host animals. METHODOLOGY/PRINCIPAL FINDINGS: We performed searches on local and international electronic databases, websites, libraries, and collections including Embase, Medline, and Scopus to gather relevant evidence (including grey literature). After extracting data on the presence and absence of the pathogen and its vectors, we ranked the evidence based on the certainty for the presence of human infection risk. The country was divided into subnational units, and each were assigned a score based on the evidence available for that unit. We presented this in an evidence map. Orientia tsutsugamushi presence has been identified on all the main islands (Sumatra, Java, Borneo, Celebes, Papua). About two thirds of the data points were collected before 1946. South Sumatra and Biak had the strongest evidence for sustaining infectious vectors. There was only one laboratory confirmed case in a human identified but 2,780 probable cases were documented. The most common vector was Leptotrombidium deliense. CONCLUSIONS/SIGNIFICANCE: Our review highlights the concerning lack of data on scrub typhus in Indonesia, the fourth most populous country in the world. The presence of seropositive samples, infected vectors and rodents confirm O. tsutsugamushi is widespread in Indonesia and likely to be causing significant morbidity and mortality. There is an urgent need to increase surveillance to better understand the burden of the disease across the archipelago and to inform national empirical fever treatment guidelines.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Animais , Humanos , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Indonésia/epidemiologia , Trombiculidae/microbiologia , Roedores/microbiologia , Febre
2.
BMC Biol ; 20(1): 46, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164747

RESUMO

BACKGROUND: Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS: We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS: Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Teorema de Bayes , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Mutação
3.
Insects ; 12(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564266

RESUMO

Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.

5.
Proc Natl Acad Sci U S A ; 117(36): 22042-22050, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843339

RESUMO

Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , África , Animais , Anopheles/fisiologia , Humanos , Mosquiteiros Tratados com Inseticida , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
6.
PLoS Negl Trop Dis ; 14(8): e0008411, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776929

RESUMO

Approximately 150 triatomine species are suspected to be infected with the Chagas parasite, Trypanosoma cruzi, but they differ in the risk they pose to human populations. The largest risk comes from species that have a domestic life cycle and these species have been targeted by indoor residual spraying campaigns, which have been successful in many locations. It is now important to consider residual transmission that may be linked to persistent populations of dominant vectors, or to secondary or minor vectors. The aim of this project was to define the geographical distributions of the community of triatomine species across the Chagas endemic region. Presence-only data with over 12, 000 observations of triatomine vectors were extracted from a public database and target-group background data were generated to account for sampling bias in the presence data. Geostatistical regression was then applied to estimate species distributions and fine-scale distribution maps were generated for thirty triatomine vector species including those found within one or two countries and species that are more widely distributed from northern Argentina to Guatemala, Bolivia to southern Mexico, and Mexico to the southern United States of America. The results for Rhodnius pictipes, Panstrongylus geniculatus, Triatoma dimidiata, Triatoma gerstaeckeri, and Triatoma infestans are presented in detail, including model predictions and uncertainty in these predictions, and the model validation results for each of the 30 species are presented in full. The predictive maps for all species are made publicly available so that they can be used to assess the communities of vectors present within different regions of the endemic zone. The maps are presented alongside key indicators for the capacity of each species to transmit T. cruzi to humans. These indicators include infection prevalence, evidence for human blood meals, and colonisation or invasion of homes. A summary of the published evidence for these indicators shows that the majority of the 30 species mapped by this study have the potential to transmit T. cruzi to humans.


Assuntos
Insetos Vetores , Triatominae/parasitologia , Trypanosoma cruzi , Distribuição Animal , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Habitação , Humanos , América Latina/epidemiologia , Modelos Teóricos
7.
PLoS Biol ; 18(6): e3000633, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32584814

RESUMO

Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends.


Assuntos
Resistência a Inseticidas , Malária/parasitologia , Mosquitos Vetores/parasitologia , África , DDT/toxicidade , Resistência a Inseticidas/efeitos dos fármacos , Aprendizado de Máquina , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/toxicidade , Fenótipo , Prevalência , Piretrinas/toxicidade , Análise Espaço-Temporal
8.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320389

RESUMO

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.


Assuntos
Comportamento Animal , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Vetores de Doenças , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Oviposição , Probabilidade
9.
Malar J ; 19(1): 150, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276585

RESUMO

BACKGROUND: Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub-Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated. METHODS: Data on IRS deployment were collated from a variety of sources, including the President's Malaria Initiative spray reports and National Malaria Control Programme reports, for all 46 malaria-endemic countries in sub-Saharan Africa from 1997 to 2017. The data were mapped to the applicable administrative divisions and the proportion of households sprayed for each of the four main insecticide classes; carbamates, organochlorines, organophosphates and pyrethroids was calculated. RESULTS: The number of countries implementing IRS increased considerably over time, although the focal nature of deployment means the number of people protected remains low. From 1997 to 2010, DDT and pyrethroids were commonly used, then partly replaced by carbamates from 2011 and by organophosphates from 2013. IRS deployment since the publication of resistance management guidelines has typically avoided overlap between pyrethroid IRS and ITN use. However, annual rotations of insecticide classes with differing modes of action are not routinely used. CONCLUSION: This study highlights the gaps between policy and practice, emphasizing the continuing potential of IRS to drive resistance. The data presented here can improve studies on the impact of IRS on malaria incidence and help to guide future malaria control efforts.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Inseticidas/uso terapêutico , Malária/prevenção & controle , Controle de Mosquitos , África Subsaariana , Resistência a Inseticidas , Inseticidas/classificação , Controle de Mosquitos/organização & administração , Estudos Retrospectivos
10.
Artigo em Inglês | MEDLINE | ID: mdl-31547208

RESUMO

The application of agricultural pesticides in Africa can have negative effects on human health and the environment. The aim of this study was to identify African environments that are vulnerable to the accumulation of pesticides by mapping geospatial processes affecting pesticide fate. The study modelled processes associated with the environmental fate of agricultural pesticides using publicly available geospatial datasets. Key geospatial processes affecting the environmental fate of agricultural pesticides were selected after a review of pesticide fate models and maps for leaching, surface runoff, sedimentation, soil storage and filtering capacity, and volatilization were created. The potential and limitations of these maps are discussed. We then compiled a database of studies that measured pesticide residues in Africa. The database contains 10,076 observations, but only a limited number of observations remained when a standard dataset for one compound was extracted for validation. Despite the need for more in-situ data on pesticide residues and application, this study provides a first spatial overview of key processes affecting pesticide fate that can be used to identify areas potentially vulnerable to pesticide accumulation.


Assuntos
Modelos Teóricos , Resíduos de Praguicidas , Poluentes do Solo , Análise Espacial , África , Agricultura , Praguicidas , Solo , Volatilização , Ciclo Hidrológico
11.
Sci Data ; 6(1): 121, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308378

RESUMO

The impact of insecticide resistance in malaria vectors is poorly understood and quantified. Here a series of geospatial datasets for insecticide resistance in malaria vectors are provided, so that trends in resistance in time and space can be quantified, and the impact of resistance found in wild populations on malaria transmission in Africa can be assessed. Specifically, data have been collated and geopositioned for the prevalence of insecticide resistance, as measured by standard bioassays, in representative samples of individual species or species complexes. Data are provided for the Anopheles gambiae species complex, the Anopheles funestus subgroup, and for nine individual vector species. Data are also given for common genetic markers of resistance to support analyses of whether these markers can improve the ability to monitor resistance in low resource settings. Allele frequencies for known resistance-associated markers in the Voltage-gated sodium channel (Vgsc) are provided. In total, eight analysis-ready, standardised, geopositioned datasets encompassing over 20,000 African mosquito collections between 1957 and 2017 are released.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , África , Animais , Marcadores Genéticos , Genótipo , Geografia , Inseticidas , Malária , Fenótipo
12.
Malar J ; 17(1): 352, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290815

RESUMO

BACKGROUND: The Malaria Atlas Project (MAP) has worked to assemble and maintain a global open-access database of spatial malariometric data for over a decade. This data spans various formats and topics, including: geo-located surveys of malaria parasite rate; global administrative boundary shapefiles; and global and regional rasters representing the distribution of malaria and associated illnesses, blood disorders, and intervention coverage. MAP has recently released malariaAtlas, an R package providing a direct interface to MAP's routinely-updated malariometric databases and research outputs. METHODS AND RESULTS: The current paper reviews the functionality available in malariaAtlas and highlights its utility for spatial epidemiological analysis of malaria. malariaAtlas enables users to freely download, visualise and analyse global malariometric data within R. Currently available data types include: malaria parasite rate and vector occurrence point data; subnational administrative boundary shapefiles; and a large suite of rasters covering a diverse range of metrics related to malaria research. malariaAtlas is here used in two mock analyses to illustrate how this data may be incorporated into a standard R workflow for spatial analysis. CONCLUSIONS: malariaAtlas is the first open-access R-interface to malariometric data, providing a new and reproducible means of accessing such data within a freely available and commonly used statistical software environment. In this way, the malariaAtlas package aims to contribute to the environment of data-sharing within the malaria research community.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Bases de Dados Factuais , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Software , Distribuição Animal , Animais , Humanos , Incidência , Malária/parasitologia , Prevalência
13.
Proc Natl Acad Sci U S A ; 115(23): 5938-5943, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784773

RESUMO

The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.


Assuntos
Culicidae/efeitos dos fármacos , Genes de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária , Mosquitos Vetores/efeitos dos fármacos , Animais , DDT/farmacologia , Malária/prevenção & controle , Malária/transmissão , Modelos Estatísticos , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia
14.
Lancet Glob Health ; 6(3): e270-e278, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29398634

RESUMO

BACKGROUND: Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur. INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Febre Amarela/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Incidência , Modelos Estatísticos , Risco , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem
15.
Artigo em Inglês | MEDLINE | ID: mdl-29382107

RESUMO

The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses.


Assuntos
Aedes/virologia , Arbovírus , Mosquitos Vetores , África , Animais , Infecções por Arbovirus/transmissão , Humanos
16.
Lancet ; 390(10113): 2662-2672, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29031848

RESUMO

BACKGROUND: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean-Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. METHODS: In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. FINDINGS: We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. INTERPRETATION: Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support. FUNDING: Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development.


Assuntos
Febres Hemorrágicas Virais/epidemiologia , Pandemias , África/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Humanos , Pandemias/estatística & dados numéricos , Medição de Risco
17.
Lancet ; 390(10108): 2171-2182, 2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-28958464

RESUMO

BACKGROUND: During the Millennium Development Goal (MDG) era, many countries in Africa achieved marked reductions in under-5 and neonatal mortality. Yet the pace of progress toward these goals substantially varied at the national level, demonstrating an essential need for tracking even more local trends in child mortality. With the adoption of the Sustainable Development Goals (SDGs) in 2015, which established ambitious targets for improving child survival by 2030, optimal intervention planning and targeting will require understanding of trends and rates of progress at a higher spatial resolution. In this study, we aimed to generate high-resolution estimates of under-5 and neonatal all-cause mortality across 46 countries in Africa. METHODS: We assembled 235 geographically resolved household survey and census data sources on child deaths to produce estimates of under-5 and neonatal mortality at a resolution of 5 × 5 km grid cells across 46 African countries for 2000, 2005, 2010, and 2015. We used a Bayesian geostatistical analytical framework to generate these estimates, and implemented predictive validity tests. In addition to reporting 5 × 5 km estimates, we also aggregated results obtained from these estimates into three different levels-national, and subnational administrative levels 1 and 2-to provide the full range of geospatial resolution that local, national, and global decision makers might require. FINDINGS: Amid improving child survival in Africa, there was substantial heterogeneity in absolute levels of under-5 and neonatal mortality in 2015, as well as the annualised rates of decline achieved from 2000 to 2015. Subnational areas in countries such as Botswana, Rwanda, and Ethiopia recorded some of the largest decreases in child mortality rates since 2000, positioning them well to achieve SDG targets by 2030 or earlier. Yet these places were the exception for Africa, since many areas, particularly in central and western Africa, must reduce under-5 mortality rates by at least 8·8% per year, between 2015 and 2030, to achieve the SDG 3.2 target for under-5 mortality by 2030. INTERPRETATION: In the absence of unprecedented political commitment, financial support, and medical advances, the viability of SDG 3.2 achievement in Africa is precarious at best. By producing under-5 and neonatal mortality rates at multiple levels of geospatial resolution over time, this study provides key information for decision makers to target interventions at populations in the greatest need. In an era when precision public health increasingly has the potential to transform the design, implementation, and impact of health programmes, our 5 × 5 km estimates of child mortality in Africa provide a baseline against which local, national, and global stakeholders can map the pathways for ending preventable child deaths by 2030. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Causas de Morte , Mortalidade da Criança/tendências , Conservação dos Recursos Naturais , Mortalidade Infantil/tendências , África Ocidental , Fatores Etários , Teorema de Bayes , Pré-Escolar , Países em Desenvolvimento , Feminino , Objetivos , Humanos , Lactente , Recém-Nascido , Masculino , Vigilância da População , Valor Preditivo dos Testes , Medição de Risco , Fatores Sexuais
18.
Lancet Infect Dis ; 17(11): 1209-1217, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28822780

RESUMO

BACKGROUND: Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. METHODS: For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. FINDINGS: Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. INTERPRETATION: Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. FUNDING: The Rhodes Trust, Bill & Melinda Gates Foundation, the Wellcome Trust, the National Library of Medicine of the National Institutes of Health, the European Union's Horizon 2020 research and innovation programme.


Assuntos
Vacinação , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/prevenção & controle , Saúde Global , Humanos , Estudos Retrospectivos , Febre Amarela/epidemiologia
19.
PLoS Negl Trop Dis ; 11(7): e0005625, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28727779

RESUMO

Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.


Assuntos
Aedes/genética , Arbovírus/patogenicidade , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Aedes/efeitos dos fármacos , Aedes/virologia , África , América , Animais , Arbovírus/classificação , Ásia , Bioensaio , Humanos , Inativação Metabólica , Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Insetos Vetores/virologia , Inseticidas/classificação , Larva/efeitos dos fármacos
20.
BMJ Glob Health ; 2(2): e000198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589015

RESUMO

Protecting individuals and households against mosquito bites with long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS) can suppress entire populations of unusually efficient malaria vector species that predominantly feed indoors on humans. Mosquitoes which usually feed on animals are less reliant on human blood, so they are far less vulnerable to population suppression effects of such human-targeted insecticidal measures. Fortunately, the dozens of mosquito species which primarily feed on animals are also relatively inefficient vectors of malaria, so personal protection against mosquito bites may be sufficient to eliminate transmission. However, a handful of mosquito species are particularly problematic vectors of residual malaria transmission, because they feed readily on both humans and animals. These unusual vectors feed often enough on humans to be potent malaria vectors, but also often enough on animals to evade population control with LLINs, IRS or any other insecticidal personal protection measure targeted only to humans. Anopheles arabiensis and A. coluzzii in Africa, A. darlingi in South America and A. farauti in Oceania, as well as A. culicifacies species E, A. fluviatilis species S, A. lesteri and A. minimus in Asia, all feed readily on either humans or animals and collectively mediate residual malaria transmission across most of the tropics. Eliminating malaria transmission by vectors exhibiting such dual host preferences will require aggressive mosquito population abatement, rather than just personal protection of humans. Population suppression of even these particularly troublesome vectors is achievable with a variety of existing vector control technologies that remain underdeveloped or underexploited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...