Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 121: 104609, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082181

RESUMO

Stent deployment in a calcified coronary artery is often associated with suboptimal outcomes such as stent underexpansion and malapposition. Post-dilation after stent deployment is commonly used for optimal stent implantation. There is no guideline for choosing the post-dilation balloon diameter and inflation pressure. In this work, ex-vivo/in-silico experiments were performed to investigate the efficacy of post-dilation balloon diameter and inflation pressure in improving the stent expansion in a calcified lesion. Post-dilations with three balloon diameters (3 mm, 3.5 mm, and 4 mm) were performed. For each balloon diameter, three inflation pressures (10 atm, 20 atm, and 30 atm) were sequentially applied. In ex-vivo experiments, optical coherence tomography images were acquired during the stenting procedure, i.e., pre- and post-deployment of 3 mm diameter stent, as well as after each post-dilation. The results from in-silico experiments were compared with ex-vivo experiments in terms of lumen area. In addition, stretch ratio analysis was developed to predict the stent-induced lumen area, along with the strain analysis and the in-silico experiments. Results have shown that target lumen area could be achieved with an oversized nominal balloon diameter of +0.5 mm (i.e., 0.5 mm greater than reference lumen diameter) at an inflation pressure of 20 atm. After each post-dilation, fibrotic tissue demonstrated a larger strain, contributing to improved lumen gain. However, minimal changes were observed in calcification. Moreover, a strong correlation (R2 = 0.95) between the stretch ratio of fibrotic tissue and lumen area after each post-dilation was observed. This indicated that the morphology of the fibrotic tissue could be a potential marker to predict the lumen gain. The detailed mechanistic quantifications of a single lesion cannot be generalized to all clinical cases. However, this work could be used to provide a fundamental understanding of the post-dilations, to develop experimental protocols for producing generalized guidelines, and to exploit their potential for optimal pre- and post-stent strategies.


Assuntos
Angioplastia Coronária com Balão , Vasos Coronários , Dilatação , Stents , Tomografia de Coerência Óptica , Resultado do Tratamento
2.
Am J Ophthalmol ; 223: 396-404, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32663454

RESUMO

PURPOSE: Abusive head trauma (AHT) is the leading cause of infant death and long-term morbidity from injury. The ocular consequences of AHT are controversial, and the pathophysiology of retinal research findings is still not clearly understood. It has been postulated that vitreoretinal traction plays a major role in the retinal findings. A computer simulation model was developed to evaluate the vitreoretinal traction and determine whether the distribution of forces in different layers and locations of the retina can explain the patterns of retinal hemorrhage (RH) seen in AHT. DESIGN: Computer simulation model study. METHODS: A computer simulation model of the pediatric eye was developed to evaluate preretinal, intraretinal, and subretinal stresses during repetitive shaking. This model was also used to examine the forces applied to various segments along blood vessels. RESULTS: Calculated stress values from the computer simulation ranged from 3-16 kPa at the vitreoretinal interface through a cycle of shaking. Maximal stress was observed at the periphery of the retina, corresponding to areas of multiple vessel bifurcations, followed by the posterior pole of the retina. Stress values were similar throughout all 3 layers of the retina (preretinal, intraretinal, and subretinal layers). CONCLUSIONS: Ocular manifestations from AHT revealed unique retinal characteristics. The model predicted stress patterns consistent with the diffuse retinal hemorrhages (RH) typically found in the posterior pole and around the peripheral retina in AHT. This computer model demonstrated that similar stress forces were produced in different layers of the retina, consistent with the finding that retinal hemorrhages are often found in multiple layers of the retina. These data can help explain the RH patterns commonly found in AHT.


Assuntos
Maus-Tratos Infantis , Simulação por Computador , Traumatismos Craniocerebrais/complicações , Hemorragia Retiniana/fisiopatologia , Humanos , Lactente , Hemorragia Retiniana/diagnóstico , Hemorragia Retiniana/etiologia
3.
J Biomech Eng ; 142(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654052

RESUMO

In this work, a heavily calcified coronary artery model was reconstructed from optical coherence tomography (OCT) images to investigate the impact of calcification characteristics on stenting outcomes. The calcification was quantified at various cross sections in terms of angle, maximum thickness, and area. The stent deployment procedure, including the crimping, expansion, and recoil, was implemented. The influence of calcification characteristics on stent expansion, malapposition, and lesion mechanics was characterized. Results have shown that the minimal lumen area following stenting occurred at the cross section with the greatest calcification angle. The calcification angle constricted the stretchability of the lesion and thus resulted in a small lumen area. The maximum principal strain and von Mises stress distribution patterns in both the fibrotic tissue and artery were consistent with the calcification profiles. The radially projected region of the calcification tends to have less strain and stress. The peak strain and stress of the fibrotic tissue occurred near the interface with the calcification. It is also the region with a high risk of tissue dissection and strut malapposition. In addition, the superficial calcification with a large angle aggregated the malapposition at the middle of the calcification arc. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the role of calcification in stent expansions, as well as to exploit their potential for enhanced pre- and post-stenting strategies.


Assuntos
Stents , Tomografia de Coerência Óptica , Idoso , Angiografia Coronária , Vasos Coronários , Humanos , Pessoa de Meia-Idade
4.
Artigo em Inglês | MEDLINE | ID: mdl-35978855

RESUMO

Because coronary artery calcified plaques can hinder or eliminate stent deployment, interventional cardiologists need a better way to plan interventions, which might include one of the many methods for calcification modification (e.g., atherectomy). We are imaging calcifications with intravascular optical coherence tomography (IVOCT), which is the lone intravascular imaging technique with the ability to image the extent of a calcification, and using results to build vessel-specific finite element models for stent deployment. We applied methods to a large set of image data (>45 lesions and > 2,600 image frames) of calcified plaques, manually segmented by experts into calcified, lumen and "other" tissue classes. In optimization experiments, we evaluated anatomical (x, y) versus acquisition (r,θ) views, augmentation methods, and classification noise cleaning. Noisy semantic segmentations are cleaned by applying a conditional random field (CRF). We achieve an accuracy of 0.85 ± 0.04, 0.99 ± 0.01, and 0.97 ± 0.01, and F-score of 0.88 ± 0.07, 0.97 ± 0.01, and 0.91 ± 0.04 for calcified, lumen, and other tissues classes respectively across all folds following CRF noise cleaning. As a proof of concept, we applied our methods to cadaver heart experiments on highly calcified plaques. Following limited manual correction, we used our calcification segmentations to create a lesion-specific finite element model (FEM) and used it to predict direct stenting deployment at multiple pressure steps. FEM modeling of stent deployment captured many features found in the actual stent deployment (e.g., lumen shape, lumen area, and location and number of apposed stent struts).

5.
Materials (Basel) ; 12(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577421

RESUMO

The objective of this study is to characterize the micromechanical properties of poly-l-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 µm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of the composite was further examined by a representative volume element (RVE) model. The results showed that the interphase layer provided a smooth transition of elastic modulus from steel particles to the polymeric matrix. A 10% volume fraction of steel particles could enhance the elastic modulus of PLLA polymer by 31%. In addition, steel particles took 37% to 59% of the applied load with respect to the particle volume fraction. We found that degradation of the interphase reduced the elastic modulus of the composite by 70% and 7% under tensile and compressive loads, respectively. The shear modulus of the composite with 10% particles decreased by 36%, i.e., lower than pure PLLA, when debonding occurred.

6.
Comput Biol Med ; 100: 43-49, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975854

RESUMO

OBJECTIVE: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes. METHODS: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared. RESULTS: The lumen gain for both the flared stent and the straight one exhibited no significant difference. The flared stent induced a significantly larger contact force and thus a larger stress onto the esophagus wall. In addition, more migration resistance force was required to pull the flared stent through the esophagus. This force was inversely related to the occurrence rate of stent migration. A doubled strut diameter also increased the migration resistance force by approximately 56%. An increased friction coefficient from 0.1 to 0.3 also boosted the migration resistance force by approximately 39%. SUMMARY: The mechanical advantage of the flared stent was unveiled by the significantly increased contact force, which provided the anchoring effect to resist stent migration. Both the strut diameter and friction coefficient positively correlated with the migration resistance force, and thus the occurrence of stent migration.


Assuntos
Neoplasias Esofágicas/cirurgia , Esôfago/cirurgia , Modelos Biológicos , Desenho de Prótese , Falha de Prótese , Stents , Fricção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...