Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-16, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038436

RESUMO

The reuse of by-products has become increasingly important as a means of minimising the consumption of natural resources and reducing waste disposal. This study examines the potential reuse of steel slag for soil stabilisation, with benefits such as conserving natural resources and mitigating the greenhouse gas emissions associated with the production of conventional stabilising agents. It focuses on evaluating the effect of pozzolanic reactions on the strength and stiffness of both loess silt and silt-bentonite mixtures. The experimental tests included the physical characterisation of granular materials, reactivity tests of the pozzolanicity of soil mixtures, compaction tests, unconfined compression tests, and hydraulic conductivity tests. The impact of the curing period was also analysed to quantify the effects of natural cementation and the development of hydrogels within soil pores on the compacted soil properties. The findings suggest that adding steel slag can significantly increase the strength and the stiffness of compacted loess silts by over 300% and 500%, respectively, after 56 days of curing, substantially reducing the hydraulic conductivity of granular materials, such as the tested silt, as hydrogels partially occupy the pores available for liquid flow. It should be noted that the chemical reactions during hydrogel formation may hinder the free expansion of clay mixtures and release Ca2+ ions, thereby counteracting the expected reduction in hydraulic conductivity when bentonite is added to compacted earthen barriers.

2.
Water Sci Technol ; 81(7): 1345-1353, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32616687

RESUMO

The present paper reveals results of research for cost-effective removal of chemical oxygen demand (COD) contained in industrial paper mill effluent. Not only process efficiency but also wastewater treatment costs are discussed. Different pre-treatment processes are applied aiming to investigate the COD removal before discharge to the municipal sewage network. The objective of this paper is to find the optimal operating conditions for the coagulation process. The effects of key operational parameters, including the type of coagulant, initial pH, temperature and coagulant dose, on COD percentage removal were investigated. The laboratory experiments confirmed the high efficiency of chemically enhanced mechanical treatment towards COD. The data obtained show that even low dose of chemicals provides sufficient COD reduction. The initial pH of the wastewater had a significant impact on the COD removal. Under the optimal operational conditions (pH = 7.5, T = 18 °C) the treatment of wastewater from paper industries by coagulation has led to a reduction of 70% COD for wastewater discharged. In terms of the investigated paper industry wastewater, polyaluminium chloride appears to be most suitable for treatment of high COD concentration. However, in an economic evaluation of requirements for wastewater treatment, operating costs and associated saving were such that PAX was more favourable.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Análise Custo-Benefício , Resíduos Industriais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...