Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 10(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36296269

RESUMO

The Cape fynbos biome in South Africa is home to highly diverse and endemic shrub legumes, which include species of Aspalathus, Polhillia, Wiborgia and Wiborgiella. These species play a significant role in improving soil fertility due to their ability to fix N2. However, information regarding their microbiome is still unknown. Using the 16S rRNA Miseq illumina sequencing, this study assessed the bacterial community structure associated with the rhizospheres of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea and Wiborgiella sessilifolia growing at different locations during the wet and dry seasons in the Cape fynbos. The results showed that the most dominant bacterial phylum was Actinobacteria during both the dry (56.2-37.2%) and wet (46.3-33.3%) seasons. Unclassified bacterial genera (19.9-27.7%) were the largest inhabitants in the rhizospheres of all five species during the two seasons. The other dominant phyla included Bacteroidetes, Acidobacteria, Proteobacteria and Firmicutes. Mycobacterium and Conexibacter genera were the biggest populations found in the rhizosphere soil of all five test species during both seasons, except for W. obcordata soil sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In this study plant species and growth season were the major drivers of microbial community structure, with W. obcordata having the greatest influence on its microbiome than the other test species. The wet season promoted greater microbial diversity than the dry season.

2.
Sci Rep ; 11(1): 23614, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880288

RESUMO

Polhillia, Wiborgia and Wiborgiella species are shrub legumes endemic to the Cape fynbos of South Africa. They have the ability to fix atmospheric N2 when in symbiosis with soil bacteria called 'rhizobia'. The aim of this study was to assess the morpho-physiological and phylogenetic characteristics of rhizobia associated with the nodulation of Polhillia, Wiborgia and Wiborgiella species growing in the Cape fynbos. The bacterial isolates from root nodules consisted of a mixture of fast and intermediate growers that differed in colony shape and size. The isolates exhibited tolerance to salinity (0.5-3% NaCl) and pH (pH 5-10) and different antibiotic concentrations, and could produce 0.51 to 51.23 µg mL-1 of indole-3-acetic acid (IAA), as well as solubilize tri-calcium phosphate. The ERIC-PCR results showed high genomic diversity in the rhizobial population and grouped them into two major clusters. Phylogenetic analysis based on 16S rRNA, atpD, glnII, gyrB, nifH and nodC gene sequences revealed distinct and novel evolutionary lineages related to the genus Rhizobium and Mesorhizobium, with some of them being very close to Mesorhizobium australicum. However, the phylogenetic analysis of glnII and nifH genes of some isolates showed incongruency.


Assuntos
Adaptação Fisiológica , Ecossistema , Fabaceae/fisiologia , Filogenia , Simbiose , DNA Bacteriano/genética , Resistência a Medicamentos/genética , Fabaceae/classificação , Fabaceae/genética , Fixação de Nitrogênio , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/fisiologia , Salinidade , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...