Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253597

RESUMO

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Citocinas/antagonistas & inibidores , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tumores Neuroendócrinos/tratamento farmacológico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancers (Basel) ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235707

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains an unmet clinical problem in urgent need of newer molecularly driven treatment modalities. Calcium signals, particularly those associated with calcium release-activated calcium (CRAC) channels, are known to influence the development, growth, and metastasis of many cancers. This is the first study investigating the impact of CRAC channel inhibition on PDAC cell lines and patient-derived tumor models. PDAC cell lines were exposed to a novel CRAC channel inhibitor, RP4010, in the presence or absence of standard of care drugs such as gemcitabine and nab-paclitaxel. The in vivo efficacy of RP4010 was evaluated in a hyaluronan-positive PDAC patient-derived xenograft (PDx) in the presence or absence of chemotherapeutic agents. Treatment of PDAC cell lines with single-agent RP4010 decreased cell growth, while the combination with gemcitabine/nab-paclitaxel exhibited synergy at certain dose combinations. Molecular analysis showed that RP4010 modulated the levels of markers associated with CRAC channel signaling pathways. Further, the combination treatment was observed to accentuate the effect of RP4010 on molecular markers of CRAC signaling. Anti-tumor activity of RP4010 was enhanced in the presence of gemcitabine/nab-paclitaxel in a PDAC PDx model. Our study indicates that targeting CRAC channel could be a viable therapeutic option in PDAC that warrants further clinical evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...