Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 69(2): 201-212, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28992278

RESUMO

Being sessile organisms, plants have evolved mechanisms allowing them to control their growth and development in response to environmental changes. This occurs by means of complex interacting signalling networks that integrate diverse environmental cues into co-ordinated and highly regulated responses. Auxin is an essential phytohormone that functions as a signalling molecule, driving both growth and developmental processes. It is involved in numerous biological processes ranging from control of cell expansion and cell division to tissue specification, embryogenesis, and organ development. All these processes require the formation of auxin gradients established and maintained through the combined processes of biosynthesis, metabolism, and inter- and intracellular directional transport. Environmental conditions can profoundly affect the plant developmental programme, and the co-ordinated shoot and root growth ought to be fine-tuned to environmental challenges such as temperature, light, and nutrient and water content. The key role of auxin as an integrator of environmental signals has become clear in recent years, and emerging evidence implicates auxin biosynthesis as an essential component of the overall mechanisms of plants tolerance to stress. In this review, we provide an account of auxin's role as an integrator of environmental signals and, in particular, we highlight the effect of these signals on the control of auxin production.


Assuntos
Ácidos Indolacéticos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais , Meio Ambiente
2.
J Exp Bot ; 66(16): 5029-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26019252

RESUMO

Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecia (female, containing ovules). These organs synchronously develop within protective flower buds, until anthesis, via tightly coordinated mechanisms that are essential for effective fertilization and production of viable seeds. The phytohormone auxin is one of the key endogenous signalling molecules controlling initiation and development of these, and other, plant organs. In particular, its uneven distribution, resulting from tightly controlled production, metabolism and directional transport, is an important morphogenic factor. In this review we discuss how developmentally controlled and localized auxin biosynthesis and transport contribute to the coordinated development of plants' reproductive organs, and their fertilized derivatives (embryos) via the regulation of auxin levels and distribution within and around them. Current understanding of the links between de novo local auxin biosynthesis, auxin transport and/or signalling is presented to highlight the importance of the non-cell autonomous action of auxin production on development and morphogenesis of reproductive organs and embryos. An overview of transcription factor families, which spatiotemporally define local auxin production by controlling key auxin biosynthetic enzymes, is also presented.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/embriologia , Arabidopsis/crescimento & desenvolvimento , Morfogênese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...