Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827126

RESUMO

Urinary bladder cancer is one of the most common cancers of the urinary tract. This cancer is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and care. With the aim of increasing diagnosis accuracy, artificial intelligence algorithms are introduced to clinical decision making and diagnostics. One of the standard procedures for bladder cancer diagnosis is computer tomography (CT) scanning. In this research, a transfer learning approach to the semantic segmentation of urinary bladder cancer masses from CT images is presented. The initial data set is divided into three sub-sets according to image planes: frontal (4413 images), axial (4993 images), and sagittal (996 images). First, AlexNet is utilized for the design of a plane recognition system, and it achieved high classification and generalization performances with an AUCmicro¯ of 0.9999 and σ(AUCmicro) of 0.0006. Furthermore, by applying the transfer learning approach, significant improvements in both semantic segmentation and generalization performances were achieved. For the case of the frontal plane, the highest performances were achieved if pre-trained ResNet101 architecture was used as a backbone for U-net with DSC¯ up to 0.9587 and σ(DSC) of 0.0059. When U-net was used for the semantic segmentation of urinary bladder cancer masses from images in the axial plane, the best results were achieved if pre-trained ResNet50 was used as a backbone, with a DSC¯ up to 0.9372 and σ(DSC) of 0.0147. Finally, in the case of images in the sagittal plane, the highest results were achieved with VGG-16 as a backbone. In this case, DSC¯ values up to 0.9660 with a σ(DSC) of 0.0486 were achieved. From the listed results, the proposed semantic segmentation system worked with high performance both from the semantic segmentation and generalization standpoints. The presented results indicate that there is the possibility for the utilization of the semantic segmentation system in clinical practice.

2.
Biology (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652727

RESUMO

Urinary bladder cancer is one of the most common urinary tract cancers. Standard diagnosis procedure can be invasive and time-consuming. For these reasons, procedure called optical biopsy is introduced. This procedure allows in-vivo evaluation of bladder mucosa without the need for biopsy. Although less invasive and faster, accuracy is often lower. For this reason, machine learning (ML) algorithms are used to increase its accuracy. The issue with ML algorithms is their sensitivity to the amount of input data. In medicine, collection can be time-consuming due to a potentially low number of patients. For these reasons, data augmentation is performed, usually through a series of geometric variations of original images. While such images improve classification performance, the number of new data points and the insight they provide is limited. These issues are a motivation for the application of novel augmentation methods. Authors demonstrate the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for the generation of images. Augmented datasets used for training of commonly used Convolutional Neural Network-based (CNN) architectures (AlexNet and VGG-16) show a significcan performance increase for AlexNet, where AUCmicro reaches values up to 0.99. Average and median results of networks used in grid-search increases. These results point towards the conclusion that GAN-based augmentation has decreased the networks sensitivity to hyperparemeter change.

3.
Health Informatics J ; 27(1): 1460458220976728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459107

RESUMO

This paper investigates the possibility of the implementation of Genetic Programming (GP) algorithm on a publicly available COVID-19 data set, in order to obtain mathematical models which could be used for estimation of confirmed, deceased, and recovered cases and the estimation of epidemiology curve for specific countries, with a high number of cases, such as China, Italy, Spain, and USA and as well as on the global scale. The conducted investigation shows that the best mathematical models produced for estimating confirmed and deceased cases achieved R2 scores of 0.999, while the models developed for estimation of recovered cases achieved the R2 score of 0.998. The equations generated for confirmed, deceased, and recovered cases were combined in order to estimate the epidemiology curve of specific countries and on the global scale. The estimated epidemiology curve for each country obtained from these equations is almost identical to the real data contained within the data set.


Assuntos
COVID-19/epidemiologia , Aprendizado de Máquina , Modelos Teóricos , Algoritmos , COVID-19/diagnóstico , COVID-19/mortalidade , Epidemias , Métodos Epidemiológicos , Humanos , SARS-CoV-2
4.
Entropy (Basel) ; 22(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33285889

RESUMO

Data from a two-stage axial vapor cryogenic compressor on the dual-fuel diesel-electric (DFDE) liquefied natural gas (LNG) carrier were measured and analyzed to investigate compressor energy and exergy efficiency in real exploitation conditions. The running parameters of the two-stage compressor were collected while changing the main propeller shafts rpm. As the compressor supply of vaporized gas to the main engines increases, so does the load and rpm in propulsion electric motors, and vice versa. The results show that when the main engine load varied from 46 to 56 rpm at main propulsion shafts increased mass flow rate of vaporized LNG at a two-stage compressor has an influence on compressor performance. Compressor average energy efficiency is around 50%, while the exergy efficiency of the compressor is significantly lower in all measured ranges and on average is around 34%. The change in the ambient temperature from 0 to 50 °C also influences the compressor's exergy efficiency. Higher exergy efficiency is achieved at lower ambient temperatures. As temperature increases, overall compressor exergy efficiency decreases by about 7% on average over the whole analyzed range. The proposed new concept of energy-saving and increasing the compressor efficiency based on pre-cooling of the compressor second stage is also analyzed. The temperature at the second stage was varied in the range from 0 to -50 °C, which results in power savings up to 26 kW for optimal running regimes.

5.
Comput Math Methods Med ; 2020: 5714714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565882

RESUMO

Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group-deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.


Assuntos
Infecções por Coronavirus/transmissão , Modelos Biológicos , Redes Neurais de Computação , Pneumonia Viral/transmissão , Algoritmos , COVID-19 , Biologia Computacional , Infecções por Coronavirus/epidemiologia , Bases de Dados Factuais , Humanos , Conceitos Matemáticos , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...