Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 83(3): 815-829, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31429999

RESUMO

PURPOSE: Multi-phase PCASL has been proposed as a means to achieve accurate perfusion quantification that is robust to imperfect shim in the labeling plane. However, there exists a bias in the estimation process that is a function of noise in the data. In this work, this bias is characterized and then addressed in animal and human data. METHODS: The proposed algorithm to overcome bias uses the initial biased voxel-wise estimate of phase tracking error to cluster regions with different off-resonance phase shifts, from which a high-SNR estimate of regional phase offset is derived. Simulations were used to predict the bias expected at typical SNR. Multi-phase PCASL in 3 rat strains (n = 21) at 9.4 T was considered, along with 20 human subjects previously imaged using ASL at 3 T. The algorithm was extended to include estimation of arterial blood flow velocity. RESULTS: Based on simulations, a perfusion estimation bias of 6-8% was expected using 8-phase data at typical SNR. This bias was eliminated when a high-precision estimate of phase error was available. In the preclinical data, the bias-corrected measure of perfusion (107 ± 14 mL/100g/min) was lower than the standard analysis (116 ± 14 mL/100g/min), corresponding to a mean observed bias across strains of 8.0%. In the human data, bias correction resulted in a 15% decrease in the estimate of perfusion. CONCLUSIONS: Using a retrospective algorithmic approach, it was possible to exploit common information found in multiple voxels within a whole region of the brain, offering superior SNR and thus overcoming the bias in perfusion quantification from multi-phase PCASL.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Marcadores de Spin , Idoso , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Calibragem , Circulação Cerebrovascular , Análise por Conglomerados , Simulação por Computador , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Perfusão , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reprodutibilidade dos Testes , Estudos Retrospectivos
2.
Magn Reson Med ; 82(5): 1920-1928, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199009

RESUMO

PURPOSE: Contributions of cerebrospinal fluid (CSF) have not been previously taken into account in the quantification of APT CEST effects, and correction for the dilution of CEST effects by CSF may allow for more robust measurement of CEST signals. The objective of this study was to compare the robustness of a partial volume (PV) correction model against a standard (4-pool) multi-pool model as far as their ability to quantify CEST effects in healthy, normal, and pathological tissue. METHODS: MRI data from 12 patients presenting with ischemic stroke, and 6 healthy subjects, were retrospectively analyzed. CEST signals derived from a 4-pool model and a PV correction model were compared for repeatability and pathological tissue contrast. The effect of PV correction (PVC) was assessed within 3 ranges of tissue PV estimate (PVE): high PVE voxels, low PVE voxels, and the whole slice. RESULTS: In voxels with a high tissue PVE, PV correction did not make a significant difference to absolute APTR* . In low PVE voxels, the PVC model exhibited a significantly decreased ischemic core signal. The PVC measures exhibited higher repeatability between healthy subjects (4 pools: 3.4%, PVC: 2.4%) while maintaining a similar ischemic core CNR (0.7) to the 4-pool model. In whole slice analysis it was found that both models exhibited similar results. CONCLUSIONS: PV correction yielded a measure of APT effects that was more repeatable than standard 4-pool analysis while achieving a similar CNR in pathological tissue, suggesting that PV-corrected analysis was more robust at low values of tissue PVE.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Artefatos , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Neuroimage Clin ; 23: 101833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063943

RESUMO

BACKGROUND: Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing imaging techniques to provide clinically-relevant information, there is a need to develop analysis techniques that deliver a robust and repeatable APT metric. The challenge to accurate quantification of an APT metric has been the heterogeneous in-vivo environment of human tissue, which exhibits several confounding magnetisation transfer effects including spectrally-asymmetric nuclear Overhauser effects (NOEs). The recent literature has introduced various model-free and model-based approaches to analysis that seek to overcome these limitations. OBJECTIVES: The objective of this work was to compare quantification techniques for CEST imaging that specifically separate APT and NOE effects for application in the clinical setting. Towards this end a methodological comparison of different CEST quantification techniques was undertaken in healthy subjects, and around clinical endpoints in a cohort of acute stroke patients. METHODS: MRI data from 12 patients presenting with ischaemic stroke were retrospectively analysed. Six APT quantification techniques, comprising model-based and model-free techniques, were compared for repeatability and ability for APT to distinguish pathological tissue in acute stroke. RESULTS: Robustness analysis of six quantification techniques indicated that the multi-pool model-based technique had the smallest contrast between grey and white matter (2%), whereas model-free techniques exhibited the highest contrast (>30%). Model-based techniques also exhibited the lowest spatial variability, of which 4-pool APTR∗ was by far the most uniform (10% coefficient of variation, CoV), followed by 3-pool analysis (20%). Four-pool analysis yielded the highest ischaemic core contrast-to-noise ratio (0.74). Four-pool modelling of APT effects was more repeatable (3.2% CoV) than 3-pool modelling (4.6% CoV), but this appears to come at the cost of reduced contrast between infarct growth tissue and normal tissue. CONCLUSION: The multi-pool measures performed best across the analyses of repeatability, spatial variability, contrast-to-noise ratio, and grey matter-white matter contrast, and might therefore be more suitable for use in clinical imaging of acute stroke. Addition of a fourth pool that separates NOEs and semisolid effects appeared to be more biophysically accurate and provided better separation of the APT signal compared to the 3-pool equivalent, but this improvement appeared be accompanied by reduced contrast between infarct growth tissue and normal tissue.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Prótons , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Masculino , Estudos Prospectivos , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...