Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163341, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031937

RESUMO

The aim of this greenhouse study was to evaluate root irrigation, foliar spray, and stem injection in order to find the best method for the nanofertilization of avocado plants with green synthesized CuNPs. One-year-old avocado plants were supplied four times (every 15 days) with 0.25 and 0.50 mg/ml of CuNPs through the three fertilization methods. Stem growth and new leaf formation were evaluated over time and after 60 days of CuNPs exposure, several plant traits (root growth, fresh and dry biomass, plant water content, cytotoxicity, photosynthetic pigments, and total Cu accumulation in plant tissues) were evaluated for CuNPs improvement. Regarding the control treatment, stem growth and new leaf appearance were increased by 25 % and 85 %, respectively, by the CuNPs supply methods of foliar spray>stem injection>root irrigation, with little significant differences among NPs concentrations. Avocado plants supplied with 0.25 and 0.50 mg/ml CuNPs maintained a hydric balance and cell viability ranged from 91 to 96 % through the three NPs application methods. TEM did not reveal any ultrastructural organelle changes induced by CuNPs in leaf tissues. The concentrations of CuNPs tested were not high enough to exert deleterious effects on the photosynthetic machinery of avocado plants, but photosynthetic efficiency was also found to be improved. The foliar spray method showed improved uptake and translocation of CuNPs, with almost no loss of Cu. In general, the improvement in plant traits indicated that the foliar spray method was the best for nanofertilization of avocado plants with CuNPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Persea , Cobre/análise , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Folhas de Planta/química , Fotossíntese
2.
RSC Adv ; 12(16): 9898-9908, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424965

RESUMO

In this work, nanoparticles (NPs) of ZnO, ZnO with Cu incorporated at 2 and 30 wt%, and CuO were prepared by the hydrothermal method. X-ray diffraction pattern (DRX) analysis showed that ZnO with high Cu incorporation (30 wt%) generates the formation of a composite oxide (ZnO/CuO), while X-ray photoelectron spectroscopy (XPS) of the Cu (2 wt%) sample indicated that Cu is incorporated as a dopant (ZnO/Cu2%). The samples with Cu incorporated had enhanced visible light absorption. Methyl orange (MO) dye was used to perform photocatalytic tests under UV radiation. The antifungal activity of the NPs was tested against four agricultural phytopathogenic fungi: Neofusicoccum arbuti, Alternaria alternata, Fusarium solani, and Colletotrichum gloeosporioides. The ZnO/Cu2% nanoparticles showed adequate photocatalytic and high antifungal activity in comparison to pure oxides and the composite sample.

3.
Waste Manag ; 102: 48-55, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669674

RESUMO

Citrus wax is a waste generated during the purification process of the citrus essential oil. A lot of citrus wax wastes are globally produced, despite this, its composition and properties are not well known. Here we present comprehensive results proving the chemical composition and the physical properties of citrus wax. Additionally, our study provides the basis for obtaining value-added products from citrus wax wastes. The qualitative/quantitative analysis revealed the presence of different compounds, which range from flavonoids, saponins, carbohydrates, unsaturated compounds, phenolic hydroxyls, and long-chain fatty acid esters. Given that citrus wax is a source of many bioactive compounds, they were preferably extracted with ethanol. The ethanolic extracts demonstrated the presence in citrus wax of different bioactives, such as 5-5'-dehydrodiferulic acid, 3,7-dimethylquercetin, 5,6-dihydroxy-7,8,3',4'-tetramethoxyflavone, tangeretin, and limonene. After the extraction of bioactives from citrus wax, a washed waxy material with high content of long-chain fatty acid esters was obtained. It was shown that this washed wax can be used for the production of biodiesel. The transesterification reactions in acid media was the preferred process because higher content of fatty acid methyl esters (such as hexadecanoic acid methyl ester and 9,12-octadecadienoic acid (Z,Z)-, methyl ester) were obtained. Currently, citrus wax does not have any industrial application, here we shown that under the concept of waste biorefinery, the citrus wax wastes are useful sources for producing value-added products such as bioactive compounds and biodiesel.


Assuntos
Citrus , Biocombustíveis , Esterificação , Ésteres , Ácidos Graxos
4.
IEEE Trans Nanobioscience ; 18(4): 528-534, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31478866

RESUMO

Phytopathogenic bacteria affect a wide variety of crops, causing significant economic losses. Natural biocides are the alternative to chemical methods of phytopathogens control. The goal of the present study is the evaluation of the biocidal activity of the following: 1) the extract of orange wax (EOW); 2) zinc ferrite nanoparticles (ZF-NPs); 3) the EOW adsorbed on the ZF-NPs; and 4) the EOW/ZF-NPs washed with 40% ethanol. For the biocidal activity, three phytopathogenic bacteria were used, namely, Xanthomonas axonopodis pv. Vesicatoria (Xav) Erwinia amylovora (Ew), and Pseudomonas syringae pv. Phaseolicola (Psph). For the ZF-NPs, an inhibitory effect higher than 50% ( ) was observed for Xav respect to the antibiotic used as positive control. On the other hand, the ZF-NPs did not show inhibitory effects on both Ew and Psph. In addition, the EOW in dimethyl sulfoxide (DMSO) at 100% caused growth inhibition on Xav, bacteriostatic activity on Ew, and had not biological activity on Psph. To the best of our knowledge, the control of Xav by zinc ferrites and orange wax, and the bacteriostatic effect produced by orange wax extract on Ew have not been reported elsewhere. Orange wax and zinc ferrite nanoparticles show potential in control of phytopathogenic bacteria. However, the bactericidal effect depends on the bacterium, the concentration of treatments, and the method of preparation.


Assuntos
Antibacterianos/administração & dosagem , Citrus sinensis , Compostos Férricos/administração & dosagem , Nanopartículas/administração & dosagem , Extratos Vegetais/administração & dosagem , Zinco/administração & dosagem , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/crescimento & desenvolvimento , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Xanthomonas axonopodis/efeitos dos fármacos , Xanthomonas axonopodis/crescimento & desenvolvimento
5.
J Hazard Mater ; 380: 120850, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31315070

RESUMO

Different copper based-materials have been used for controlling some fungal and bacterial pathogens. However, the antifungal activity of the copper-based materials depends on different parameters, such as the crystal phase, synthesis route, and size of the particles. Herein a facile route synthesis method of Cu/CuxO-NPs was achieved through the aqueous phase. The influence of NaBH4 concentration on the phase composition was studied. The synthesized Cu/CuxO-NPs were characterized by X-Ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering. Five Cu/CuxO-NPs with different phase composition and nanoparticle size were obtained. The antifungal activity of the synthesized Cu/CuxO-NPs was studied in vitro against Fusarium oxysporum. The results indicate that a high percent of inhibition of radial growth (IGR) was obtained with NPs, which have a higher proportion of Cu2O phase and relatively smaller size particles. Furthermore, hypha morphology, membrane damage and production of reactive oxygen species (ROS) was evaluated with SEM and confocal microscopy.


Assuntos
Antifúngicos/farmacologia , Cobre/química , Fusarium/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxidos/química , Cobre/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Água/química
6.
RSC Adv ; 9(33): 18835-18843, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516870

RESUMO

The fabrication of fungicides in cost-effective and eco-friendly ways is particularly important for agriculture. Plant pathogenic fungi produce many economic and ecological problems worldwide, which must be controlled with potent fungicides. Here we propose the green synthesis of fungicides, which consist of copper nanoparticles (Cu-NPs) prepared in aqueous media. Through in vitro experiments, the antifungal efficacy against Fusarium solani, Neofusicoccum sp., and Fusarium oxysporum was investigated. Although the antifungal activity differs for each fungal species, it was found that the Cu-NPs induce strong morphological changes in the mycelium. Additionally, the damage of the cell membranes of the pathogens was revealed by microscopic observations. For the three evaluated fungi, fluorescence microscopy demonstrated the intracellular generation of reactive oxygen species in the mycelium. This work proves that the green-synthesized Cu-NPs are potential fungicides against F. solani, Neofusicoccum sp., and F. oxysporum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...