Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemotherapy ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128459

RESUMO

INTRODUCTION: Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study is to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. METHODS: We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time PCR was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. RESULTS: We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using siRNA or AKT inactivation through the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. CONCLUSION: Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.

2.
Biochem Pharmacol ; 204: 115207, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961402

RESUMO

Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, in cancer cells, are related to a poor prognosis in a variety of cancers. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is involved in the stabilization and maturation of many oncogenic proteins. The aim of this study is to elucidate whether Hsp90 inhibitor 17-AAG could enhance tamoxifen- and erlotinib-induced cytotoxicity in nonsmall cell lung cancer (NSCLC) cells via modulating TP expression in two squamous NSCLC cell lines, H520 and H1703. We found that 17-AAG reduced TP expression via inactivating the MKK1/2-ERK1/2-mitogen-activated protein kinase (MAPK) pathway. TP knockdown with siRNA or ERK1/2 MAPK inactivation with the pharmacological inhibitor U0126 could enhance the cytotoxic and growth inhibitory effects of 17-AAG. In contrast, MKK1-CA or MKK2-CA (a constitutively active form of MKK1/2) vector-enforced expression could reduce the cytotoxic and cell growth inhibitory effects of 17-AAG. Furthermore, 17-AAG enhanced the cytotoxic and cell growth inhibitory effects of tamoxifen and erlotinib in NSCLC cells, which were associated with TP expression downregulation and MKK1/2-ERK1/2 signal inactivation. Taken together, Hsp90 inhibition downregulates TP, enhancing the tamoxifen- and erlotinib-induced cytotoxicity in H520 and H1703 cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Nucleosídeos de Pirimidina , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cloridrato de Erlotinib/uso terapêutico , Proteínas de Choque Térmico HSP90 , Humanos , Lactamas Macrocíclicas , Pulmão , Neoplasias Pulmonares/patologia , Nucleosídeos de Pirimidina/uso terapêutico , RNA Interferente Pequeno , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Timidina Fosforilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...