Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37421005

RESUMO

Dicing is a critical step in the manufacturing process for the application of sapphire. In this work, the dependence of sapphire dicing on crystal orientation using picosecond Bessel laser beam drilling combined with mechanical cleavage was studied. By using the above method, linear cleaving with on debris and zero tapers was realized for the A1, A2, C1, C2, and M1 orientations, except for the M2 orientation. The experimental results indicated that characteristics of Bessel beam-drilled microholes, fracture loads, and fracture sections of sapphire sheets were strongly dependent on crystal orientation. No cracks were generated around the micro holes when laser scanned along the A2 and M2 orientations, and the corresponding average fracture loads were large, 12.18 N and 13.57 N, respectively. While along the A1, C1, C2, and M1 orientations, laser-induced cracks extended along the laser scanning direction, resulting in a significant reduction in fracture load. Furthermore, the fracture surfaces were relatively uniform for A1, C1, and C2 orientations but uneven for A2 and M1 orientations, with a surface roughness of about 1120 nm. In addition, curvilinear dicing without debris or taper was achieved to demonstrate the feasibility of Bessel beams.

2.
Adv Colloid Interface Sci ; 305: 102698, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598535

RESUMO

The kinetic factors of the liquid-solid interface formation process are extremely useful in the design of composite preparation methods and the manufacture of comprehensive performance-controlled metal- or ceramic-based composites. Here, we review the available spreading dynamic models, focusing on wetting at high temperatures. There is yet to be developed a general spreading dynamic model with complete physical meaning that can accurately describe complicated surface-interface kinetic processes at high temperatures. In this work, we highlight common analysis errors in the description of the spreading dynamics for metal-ceramic and metal-metal systems. By unifying the expressions of the spreading dynamic models as the function f(v, θd) and fitting the experimental data reported in the literature, we discovered that the molecular-kinetic model commonly used to describe adsorption-controlled spreading at room temperature and reaction-limited spreading model used at high temperature have a certain range of overlap. When the condition σlv(cosθe-cosθd) < <2nkBT is satisfied, these models are consistent in terms of mathematical functional expressions. As a result, distinguishing between them when the spreading behavior includes both adsorption and reaction is challenging.

3.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230713

RESUMO

In this work, the reactive wetting and infiltration behaviors of a newly designed Sn-V binary alloy were comprehensively explored on porous graphite for the first time. It was discovered that 0.5 wt.% addition of V can obviously improve the wettability of liquid Sn on porous graphite and the nominal V contents in Sn-V binary alloys has minor effects on the apparent contact angles wetted at 950 °C. Moreover, the V-containing Sn-V alloys were initiated to spread on porous graphite at ~650 °C and reached a quasi-equilibrium state at ~900 °C. Spreading kinetics of Sn-3V alloy on porous graphite well fitted in the classic product reaction controlled (PRC) model. However, our microstructural characterization demonstrated that, besides vanadium carbide formation, the adsorption of V element at the wetting three-phase contact line spontaneously contributed to the reactive spreading and infiltrating of Sn-V alloys on porous graphite. Meanwhile, the formation of continuous vanadium carbides could completely block the infiltration of Sn-V active solder alloy in porous graphite. Affected by the growth kinetics of vanadium carbides, the infiltration depth of Sn-V alloys in porous graphite decreased at increased isothermal wetting temperatures. This work is believed to provide implicative notions on the fabrication of graphite related materials and devices using novel V-containing bonding alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...