Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Fitoterapia ; 176: 106004, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744382

RESUMO

The introduction of glucagon-like peptide 1 (GLP-1)-based therapies has greatly improved the management of type 2 diabetes (T2D), as they ensure good blood glucose control and promote weight loss. Ingestion of standardized herbal remedies that promote the same endogenous metabolic processes affected by the GLP-1-based treatments could provide cheaper alternatives in low- and middle-income countries, where there is currently an increase in the incidence of T2D. The focus in this study was to determine quality control parameters and the prime factors for the Rauvolfia-Citrus tea (RC-tea), as used in Nigerian traditional medicine to treat T2D. We have previously shown that the RC-tea that is made by boiling leaves of Rauvolfia vomitoria Afzel. and fruits of Citrus aurantium L. causes normalization of blood glucose and reduction of ectopic lipid accumulation in genetic diabetic (BKS-db) mice and in humans with T2D. The standardized RC-tea was made by boiling 40 g dried R. vomitoria foliage and 200 g fresh C. aurantium fruits per litre. The resulting golden-brown extract is free of microbial contamination, has pH 5 and contains ca. 230 mg naringin (marker compound for C. aurantium) and 25 mg robinin (marker compound for R. vomitoria) per litre. In addition, the herbal extract has the characteristic HPLC-DAD fingerprint where the marker compounds, naringin and robinin have retention times of approximately 26.3 min and 26.9 min, respectively, when using the outlined column and gradient elution conditions. Comparative evaluations of the antidiabetic effects of the standardized RC-tea and boiling water-extracts made with C. aurantium fruits alone (CA), R. vomitoria foliage alone (RV) and a combination of CA and RV, (CA + RV) in BKS-db mice, indicate that components from R. vomitoria foliage drive the reductions in ectopic lipid accumulation, since CA-treated mice lacked this effect. However, the normalization of blood glucose arises from combination of components from the two source plant materials as administration of either CA or RV resulted in hypoglycaemia. Interestingly, treatment with the CA + RV mixture, generated by mixing individually produced CA and RV plant extracts, resulted in hyperglycaemia, possibly due to drug-drug interactions of the blood glucose-reducing components in either plant extract. Hence, our data show that the best antidiabetic outcome results from the traditional practice of boiling R. vomitoria foliage and C. aurantium fruits together.


Assuntos
Citrus , Diabetes Mellitus Tipo 2 , Flavanonas , Hipoglicemiantes , Extratos Vegetais , Folhas de Planta , Rauwolfia , Animais , Hipoglicemiantes/farmacologia , Citrus/química , Camundongos , Flavanonas/farmacologia , Folhas de Planta/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Rauwolfia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Nigéria , Medicinas Tradicionais Africanas , Masculino , Glicemia/efeitos dos fármacos , Controle de Qualidade
3.
Adv Drug Deliv Rev ; 203: 115136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944644

RESUMO

The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno/genética , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Antineoplásicos/química , Lipoproteínas
4.
Pharmaceutics ; 15(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839959

RESUMO

Many drug candidates are poorly water-soluble. Microenvironmental pH (pHM) modification in buccal/sublingual dosage forms has attracted increasing interest as a promising pharmaceutical strategy to enhance the oral mucosal absorption of drugs with pH-dependent solubility. Optimizing drug absorption at the oral mucosa using pHM modification is considered to be a compromise between drug solubility and drug lipophilicity (Log D)/permeation. To create a desired pHM around formulations during the dissolution process, a suitable amount of pH modifiers should be added in the formulations, and the appropriate methods of pHM measurement are required. Despite pHM modification having been demonstrated to be effective in enhancing the oral mucosal absorption of drugs, some potential risks, such as oral mucosal irritation and teeth erosion caused by the pH modifiers, should not been neglected during the formulation design process. This review aims to provide a short introduction to the pHM modification concept in buccal/sublingual dosage forms, the properties of saliva related to pHM modification, as well as suitable drug candidates and pH modifiers for pHM modifying buccal/sublingual formulations. Additionally, the methods of pHM measurement, pHM modification methods and the corresponding challenges are summarized in the present review.

5.
Int J Pharm ; 610: 121236, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748810

RESUMO

Oromucosal patches for drug delivery allow fast onset of action and ability to circumvent hepatic first pass metabolism of drugs. While conventional fabrication methods such as solvent casting or hot melt extrusion are ideal for scalable production of low-cost delivery patches, these methods chiefly allow for simple, homogenous patch designs. As alternative, a multi-material direct-ink-write 3D printing for rapid fabrication of complex oromucosal patches with unique design features was demonstrated in the present study. Specifically, three print-materials: an acidic saquinavir-loaded hydroxypropyl methylcellulose ink, an alkaline effervescent sodium carbonate-loaded ink, and a methyl cellulose backing material were combined in various designs. The CO2 content and pH of the microenvironment were controlled by adjusting the number of alkaline layers in the patch. Additionally, the rigid and brittle patches were converted to compliant and stretchable patches by implementing mesh-like designs. Our results illustrate how 3D printing can be used for rapid design and fabrication of multifunctional or customized oromucosal patches with tailored dosages and changed drug permeation.


Assuntos
Impressão Tridimensional , Saquinavir , Sistemas de Liberação de Medicamentos , Tecnologia de Extrusão por Fusão a Quente , Derivados da Hipromelose
6.
Front Oncol ; 11: 736694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692512

RESUMO

Pancreatic adenocarcinoma is one of the most lethal diseases with a 5-year survival rate of about 8%. ASXL2 is an epigenetic regulator associated with various tumors including colorectal cancer, breast cancer, and myeloid leukemia. However, the role of ASXL2 in pancreatic cancer remains unclear. This is the first research focusing on the prognostic value of ASXL2 in pancreatic cancer. In this research, we aimed to explore the correlation between ASXL2 and the prognosis, as well as other features in PAAD. We obtained gene expression profiles of PAAD and normal tissues from TCGA, GEO, and Xena databases. TIMER and CIBERSORT algorithms were employed to investigate the effect of ASXL2 on tumor microenvironment. GSEA along with GO and KEGG enrichment analyses were conducted to uncover the biological functions of ASXL2. The response to various chemotherapeutic drugs was estimated by algorithms in R package "pRRophetic", while the sensitivity to immunotherapy was quantified by TIDE score. We found that ASXL2 was upregulated in the PAAD samples and elevated expression of ASXL2 was linked to poor overall survival. ASXL2 DNA methylation contributed to ASXL2 expression. Functional annotation indicated that ASXL2 was mainly involved in inflammatory response and epithelial mesenchymal transition. Patients with high ASXL2 expression were more likely to benefit from immune checkpoint blockade, gemcitabine, and mitomycin-C. Finally, external datasets and biospecimens were used and the results further validated the aberrant expression of ASXL2 in PAAD samples. In summary, our results highlight that ASXL2 is a potential prognostic and predictive biomarker in pancreatic cancer.

7.
Int J Pharm ; 609: 121183, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34653562

RESUMO

In situ forming implants are exposed to an extracellular matrix resembling a gel rather than aqueous solution upon subcutaneous administration. The aim of study was to develop a gel-based release testing system for characterizing the long-term in vitro behavior of in situ forming implants. The gel-based system consisted of an agarose gel mimicking the subcutaneous injection site and a receiver layer comprising phosphate buffer. Poly(D,L-lactide-co-glycolide) in situ forming implants containing leuprolide acetate as the model peptide and N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO) or triacetin as co-solvent were investigated. The gel-based release testing system discriminated between the formulations. Accelerated release data obtained at elevated temperatures were able to predict real-time release applying the Arrhenius equation. Monitoring of the microenvironmental pH of the implants was performed by UV-Vis imaging in the gel-based system at 50 °C. A pH drop (from pH 7.4 to 6.7 for the NMP and DMSO implants, to pH 5.5 for the triacetin implants) within the first day was observed, followed by an increase to pH âˆ¼7.4. The gel-based system coupled with UV imaging offered opportunity for detailed evaluation and prediction of the in vitro performance of long-acting injectables, facilitating future development of in situ depot forming delivery systems.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Implantes de Medicamento , Leuprolida , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Triacetina
8.
Eur J Pharm Sci ; 163: 105867, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951482

RESUMO

Buccal films containing a pH modifying excipient may be able to increase bioavailability of drugs with pH-dependent solubility such as saquinavir. Access to suitable in vitro drug release testing methods may facilitate buccal formulation development. This study aimed to explore two release testing methods for characterising buccal films and to elucidate the relationship between microenvironmental pH (pHM, i.e. the pH around the swelling films) and saquinavir release. The Franz diffusion cell method was applicable to investigate the effect of hydroxypropyl methylcellulose (HPMC) grade on saquinavir release. Films containing HPMC K3 LV had a faster saquinavir release than films containing HPMC K100 LV. A UV/Vis imaging method was developed to visualise saquinavir release and pHM changes during the initial dissolution. Within 5 min, the pHM decreased from 6.8 to around 5.4 for HPMC K100 LV-based films containing 11.1 % or 16.6 % (w/w) malic acid. Subsequently, the pHM increased due to increasing concentrations of saquinavir. An increase in malic acid content led to a faster saquinavir release. The combination of methods may be broadly applicable for excipient screening in development of buccal formulations. The imaging approach holds promise for characterizing other pH modifying formulation principles.


Assuntos
Química Farmacêutica , Saquinavir , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Solubilidade
9.
Acta Pharm Sin B ; 11(4): 871-885, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33996404

RESUMO

The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.

10.
J Pharm Biomed Anal ; 194: 113789, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33298380

RESUMO

The purpose of this study was to investigate whole-dosage form UV-vis imaging as a potential tool for functional characterization of excipients used in solid oral dosage forms. To this end, tablets (average mass 260.0 mg, 224.5 mg and 222.1 mg) containing theophylline anhydrate (20 % w/w), 1% (w/w) magnesium stearate, and 79 % (w/w) of either microcrystalline cellulose (MCC, Avicel PH 101) or hydroxypropyl methylcellulose (HPMC, Methocel K15 M or K100 M) were prepared as model systems. Drug liberation from tablets was studied in 0.01 M HCl at 37 °C using a Sirius SDi2 equipped with a USP IV type flow cell comprising a UV-vis imaging detector operating at 255 nm and 520 nm. The effluent from the flow cell was passed through a downstream spectrophotometer, and UV-vis spectra in the wavelength range 200-800 nm were recorded every 2 min. The erosion and swelling behavior of the MCC tablets and HPMC K15 M and K100 M tablets were visualized in real time. The swelling of HPMC K15 M and K100 M containing tablets was assessed quantitatively as changes in tablet diameter measured at 520 nm, and was clearly distinguished from the swelling of the MCC tablets. Namely, an increment of 2.5 mm in diameter was determined for the HPMC tablets while the MCC tablets increased by 0.5-1 mm in diameter. Gel layers of variable thickness were observed only for the HPMC K15 M and K100 M tablets. In addition, a relatively high initial liberation rate of theophylline was found for the MCC tablets as compared to the HPMC tablets. UV-vis imaging revealed features of liberation not revealed by simply measuring drug concentration in the dissolution media or by visual assessment. It may be sufficiently sensitive to be further developed for functional characterization of excipients and provide insights into drug-excipient interactions likely to be useful in formulation development.


Assuntos
Química Farmacêutica , Excipientes , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Derivados da Hipromelose , Metilcelulose , Solubilidade , Comprimidos
11.
Mol Pharm ; 17(12): 4522-4532, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164519

RESUMO

The initial drug release from in situ forming implants is affected by factors such as the physicochemical properties of the active pharmaceutical ingredient, the type of the excipients utilized, and the surrounding environment. The feasibility of UV-vis imaging for characterization of the initial behavior of poly(d,l-lactide-co-glycolide) (PLGA)/1-methyl-2-pyrrolidinone (NMP) in situ forming implants was investigated. The in vitro release of leuprolide acetate (LA) and implant formation in real time were monitored using dual-wavelength imaging at 280 and 525 nm, respectively, in matrices based on agarose gel and hyaluronic acid (HA) solution emulating the subcutaneous matrix. Three hours upon injection of the pre-formulation, approximately 15% of the total amount of LA administered was found in the agarose gel, while 5% was released from the implant into the HA solution. Concurrently, more extensive swelling of the implants in the HA solution as compared to implants in the agarose gel was observed. Transport of both LA and the solvent NMP was investigated using UV-vis imaging in a small-scale cell where the geometry of the formulation was controlled, showing a linear correlation between drug release and solvent escape. Light microscopy showed that the microstructures of the resulting implants in agarose gel and HA solution were different, which may be attributed to the different solvent exchange rates. UV imaging was also used to examine the interaction of LA with the release medium by characterizing the diffusion of LA in agarose gel, HA solution, and phosphate buffered saline. The reduced LA diffusivity in HA solution as compared to agarose gel and the LA distribution coefficient in the agarose gel-HA system indicated the presence of interactions between LA and HA. Our findings show that the external environment affects the solvent exchange kinetics for in situ forming implants in vitro, resulting in different types of initial release behavior. UV-vis imaging in combination with biorelevant matrices may offer an interesting approach in the development of in situ forming implant delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Implantes de Medicamento/farmacocinética , Excipientes/química , Leuprolida/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/química , Liberação Controlada de Fármacos , Leuprolida/administração & dosagem , Leuprolida/química , Microscopia Ultravioleta , Imagem Molecular/métodos , Solubilidade
12.
Int J Pharm ; 590: 119877, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32927003

RESUMO

The limited therapeutic option for respiratory infections caused by multi-drug resistant microbial pathogens is a major global health threat. Topical delivery of antibacterial combinations to the lung could dramatically enhance antibacterial activities and provide a means to overcome bacterial resistance development. The aim of the study was to investigate the potential of new inhalable dry powder combinations consisting of a fixed dose of aztreonam (Azt) and tobramycin (Tob) using a spray drying process, against antibiotic resistant Gram-negative respiratory pathogens. The interactions of Azt with Tob on resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were determined by calculating factional inhibitory concentration indices (FICI). A fixed concentration ratio of Azt and Tob that exhibited a synergistic antimicrobial effect was selected and formulated into inhalable dry powders by co-spray drying with and without L-leucine. The obtained dry powders were characterized with respect to the morphology, particle size distribution, solid state, moisture sorption behaviour, and in vitro dissolution. Storage stability, aerosol performance, and in vitro antibacterial activity were also evaluated. Inhalable dry powders consisting of Azt, Tob and L-leucine could be readily obtained via the spray drying process with a fine particle fraction of above 40% as determined using a next generation impactor. The co-spray drying process resulted in amorphous Azt/Tob dry powders with or without the addition of L-leucine as indicated by X-ray powder diffraction. The dissolution rates of the co-spray dried Azt/Tob dry powders were decreased, and the storage stability was improved with an increase in the proportion of L-leucine in the formulations. The inclusion of L-leucine did not affect the minimum inhibitory concentration and the co-spray dried powders reserved the synergistic antibacterial effects and exhibited enhanced antibacterial activities as compared to the individual antibiotic used alone on multidrug-resistant (Azt and Tob resistant) P. aeruginosa 25756 and A. baumannii K31. This study demonstrates that inhalable Azt/Tob dry powders using L-leucine as a moisture protector as well as a dispersing agent can be readily prepared by the spray drying process. This new inhalable fixed dose combinational dry powders may represent an alternative treatment against multidrug-resistant Gram-negative respiratory pathogens.


Assuntos
Anti-Infecciosos , Tobramicina , Administração por Inalação , Aerossóis , Antibacterianos/farmacologia , Aztreonam , Inaladores de Pó Seco , Tamanho da Partícula , Pós , Pseudomonas aeruginosa
13.
Eur J Pharm Sci ; 152: 105435, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32590123

RESUMO

Thiamphenicol (TAP) is reported to be effective against many respiratory pathogens including methicillin-resistant Staphylococcus aureus (MRSA). However, its poor solubility in water remains as one of the obstacles hindering the preparation of inhalable TAP formulations. The aim of this study was to improve the dissolution rate of TAP by micronization, and investigate whether variations in the dissolution rates of TAP would affect its in vitro antibacterial activity. Inhalable dry powders composed of TAP microcrystals (MDP) or nanocrystals (NDP) were prepared by using a wet ball milling method followed by spray drying. The morphology, solid state and in vitro dissolution of these dry powders were characterized. In vitro antibacterial activities of the inhalable TAP dry powders against a MRSA strain were evaluated. A dissolution-efficacy model relating antibacterial activity with time and dissolution rate was established via modified time-kill assays. Upon being spray dried, the volumetric mean diameters of MDP and NDP were found to be around 5 µm. Solid state analyses showed that MDP and NDP possess the same crystalline form as the raw materials. NDP exhibited faster in vitro dissolution rate as compared to MDP. The in vitro antibacterial efficiency of NDP and MDP were superior to raw TAP when the test was performed at a TAP concentration of 32 mg/L. Simulated colony forming units predictions were consistent with the result measured in the time-kill experiments with Raw TAP, MDP and NDP. This study characterized the effect of the dissolution rate of TAP dry powders on in vitro antibacterial activity against MRSA, and an enhanced antibacterial activity of TAP was observed with an increase in the dissolution rate of TAP from the dry powders at certain concentration ranges.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Tianfenicol , Administração por Inalação , Antibacterianos/farmacologia , Tamanho da Partícula , Pós , Solubilidade
14.
Int J Pharm ; 585: 119567, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32585177

RESUMO

Buccal delivery of saquinavir has the advantage to bypass the gastrointestinal enzymatic degradation and the hepatic first-pass metabolism. Saquinavir has a pH-dependent solubility and is poorly soluble in human saliva at the physiological pH. Decreasing microenvironmental pH (pHM) in saliva may increase saquinavir release from buccal formulations. The present study aimed to investigate the effects of organic acids on the pHM, saquinavir release in vitro and the solid-state form of saquinavir. An UV/Vis imaging method was used to measure pHM. After 5 min of swelling of the buccal films containing malic acid, pHM was reduced from 6.8 to 5.4. The films containing malic acid were more efficient in maintaining low pHM than films containing citric acid and succinic acid. Addition of organic acids in the buccal films resulted in a faster drug release than films without acids due to the reduced pHM. However, the enhancement of saquinavir release was limited by the fast release of organic acids. Addition of malic acid and citric acid suppressed the crystallization of saquinavir during 3 months storage at the elevated temperature (40 °C) and humidity (RH 75%) respectively. These results suggest that pHM modifying film is a potential formulation strategy for buccal delivery of saquinavir.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Saquinavir/administração & dosagem , Administração Bucal , Liberação Controlada de Fármacos , Humanos
15.
Eur J Pharm Sci ; 147: 105272, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32084584

RESUMO

The gentle preparation and the functionalization potential of self-emulsifying drug delivery systems (SEDDS) make them an interesting formulation strategy for oral administration of peptide and protein (p/p) drugs. A series of Kolliphor® RH40 (RH40) and Labrasol® (LAB)-based SEDDS containing either long-chain (LC) or medium-chain (MC) glycerides were formulated and characterized with regard to their rheological behavior, as well as the size distribution and zeta potential of the generated emulsions. Insulin, in order to be incorporated in SEDDS, was complexed with soybean phosphatidylcholine. The ability of different SEDDS to protect the incorporated insulin against enzymatic hydrolysis was evaluated by an in vitro model simulating the intestinal proteolysis. SEDDS were incubated in simulated intestinal fluids in the presence of α-Chymotrypsin (α-CT), and HPLC was used to quantify the remaining insulin. Principal component analysis (PCA) was applied to identify the relations between different excipients and properties of SEDDS that describe the SEDDS protective effect on insulin during in vitro proteolysis. The RH40-SEDDS behaved Newtonian in the presence of ethanol (EtOH) and non-Newtonian in the absence of EtOH, which generated emulsion with droplets between 30 to 300 nm. The LAB-SEDDS always behaved Newtonian and generated polydisperse emulsions with broad size distribution (190-4000 nm). During the in vitro proteolysis, insulin can be effectively protected against α-CT (> 60% remaining insulin after 60 min in vitro proteolysis). According to PCA analysis, insulin was better protected in MC-SEDDS compared to LC-SEDDS, and better in LAB-SEDDS compared to RH40-SEDDS. Monoacyl phosphatidylcholine and Capmul® MCM C8 were recognized as excipients favored for SEDDS protection on insulin. However, SEDDS viscosity and the addition of EtOH in SEDDS played insignificant roles on the remaining insulin after in vitro proteolysis. In summary, an in vitro proteolysis model with increased physiological relevance was applied to enable the optimal design of SEDDS for oral p/p drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Técnicas In Vitro , Insulina/administração & dosagem , Administração Oral , Quimotripsina/metabolismo , Hidrólise , Intestinos , Proteólise
16.
Pharm Nanotechnol ; 8(1): 22-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31663483

RESUMO

Solid lipid particles have a great potential in sustained drug delivery, the lipid excipients are solid at room temperature with a slow degradation rate. Poly (D, L-lactic-coglycolic acid) (PLGA) has been successfully clinically applied for the sustained delivery of peptide drugs. A recent study showed the advantage of hybrid PLGA-lipid microparticles (MPs) over PLGA MPs for the sustained delivery of peptide drug in vivo. In this paper, we briefly present PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP prepared by the double emulsion method and the spray drying method and discuss the effects of excipients on encapsulation efficiency of protein and peptide drugs in the MPs. The pros and cons of PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP as carriers for sustained delivery of protein and peptide drugs are also discussed.


Assuntos
Lipídeos/química , Peptídeos/administração & dosagem , Ácido Poliglicólico/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Emulsões , Microesferas , Tamanho da Partícula , Peptídeos/química
17.
Eur J Pharm Biopharm ; 142: 315-321, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31299277

RESUMO

This study aims to investigate the potential of solid lipid microparticles (MP) and hybrid polymer-lipid MPs for sustained delivery of a peptide drug, leuprolide. A peptide-phospholipid complex was prepared to increase the compatibility of the peptide with triglyceride (TG) and poly (lactide-co-glycolide) (PLGA). Peptide loaded solid lipid MPs, PLGA MPs, and hybrid MPs were prepared using a spray drying method and characterized in terms of particle size, morphology and encapsulation efficiency. The pharmacokinetics and pharmacodynamics of leuprolide after subcutaneous injection of spray-dried MPs were evaluated in rats. Spray-dried MPs were spherical ranging in size from 4 µm to 10 µm, which are suitable for injection. After subcutaneous administration of reconstituted MPs, leuprolide could be detected in plasma samples of rats for one to two months, depending on the formulation and dose. Sustained release of leuprolide from PLGA MPs and glyceryl tristearate (TG18) MPs was observed over one month, with a chemical castration effect of 25 and 30 days, respectively. The bioavailability of leuprolide from PLGA-TG18 hybrid MPs was approximately four times higher than that from TG18 MP and PLGA MP alone using the same dose of leuprolide (6 mg/kg). Chemical castration in rats was observed over 30 and 60 days after injection of the PLGA-TG18 hybrid MP with a dose of 3 mg/kg and 6 mg/kg leuprolide, respectively. Additionally, a much lower Cmax was observed for the hybrid MP group. In conclusion, spray-dried PLGA-triglyceride hybrid MPs can be used as better carriers than other MPs for subcutaneous delivery of peptide drugs due to the synergetic effect of lipids and PLGA for sustained drug release from the spray-dried MP.


Assuntos
Preparações de Ação Retardada/química , Leuprolida/química , Lipídeos/química , Polímeros/química , Animais , Disponibilidade Biológica , Composição de Medicamentos/métodos , Masculino , Microesferas , Tamanho da Partícula , Peptídeos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley
18.
Biomacromolecules ; 20(4): 1789-1797, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30893550

RESUMO

The fate of intravenously injected nanoparticles (NPs) is significantly affected by nano-protein interaction and corona formation. However, such an interaction between NPs and digestive enzymes occurring in the gastrointestinal tract (GIT) and its impacts on epithelial cell uptake are little known. We synthesized the poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-based cationic NPs (CNPs) and investigated the CNP-digestive enzyme interaction and its effect on the cellular uptake. The formation of enzyme corona was confirmed by size/zeta potential analysis, morphology, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and enzyme quantification. The cellular uptake of CNPs by Caco-2 cells was significantly reduced upon the formation of enzyme corona. Our findings demonstrate the digestive enzyme corona formation and its inhibited effect on the epithelial cell uptake of CNPs for the first time. Understanding the enzyme corona could offer a new insight into the fate of nanomedicines in the GIT, and this understanding would be highly beneficial for guiding future nanomedicine designs.


Assuntos
Células Epiteliais/enzimologia , Trato Gastrointestinal/enzimologia , Nanopartículas/química , Coroa de Proteína/química , Células CACO-2 , Humanos
19.
Acta Pharm Sin B ; 9(1): 194-201, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30766791

RESUMO

This study assessed the influence of the composition of drug-free SNEDDS co-dosed with aqueous suspensions of carvedilol (CAR), cinnarizine (CIN) or R3040 on drug solubilization in a two-compartment in vitro lipolysis model. Correlation of drug logP or solubility in SNEDDS with drug solubilization during in vitro lipolysis in the presence of drug-free SNEDDS was assessed. SNEDDS with varying ratios of soybean oil:Maisine 35-1 (1:1, w/w) and Kolliphor RH40, with ethanol at 10% (w/w) were used. SNEDDS were named F65, F55 and F20 (numbers refer to the percentage of lipids) and aqueous suspensions without drug-free SNEDDS (F0) were also analyzed. While the ranking order of drug solubilization was F65=F55=F20>F0 for CAR; F65=F55>F20>F0 for CIN and F65=F55=F20>F0 for R3040 - with higher CAR solubilization than for R3040 and CIN - the ranking of S eq of CAR, CIN and R3040 in SNEDDS was F65F20 and F65>F55>F20, respectively. Therefore, the composition of SNEDDS influenced the solubilization of CIN, but not CAR and R3040. Furthermore, high S eq in SNEDDS did not reflect high drug solubilization. As CAR (logP 3.8) showed higher solubilization than CIN (logP 5.8) and R3040 (logP 10.4), a correlation between drug logP and drug solubilization was observed.

20.
Int J Pharm ; 560: 377-384, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790612

RESUMO

To face the challenges of oral delivery of peptide and protein (P/P) drugs, self-emulsifying drug delivery systems (SEDDSs) containing monoacyl phosphatidylcholine (MAPC), Labrasol (LAB) and medium-chain (MC) monoglycerides as permeation enhancers (PEs) were evaluated for their effect on intestinal absorption of insulin. In this study, insulin was complexed with phosphatidylcholine (SPC) to form an insulin-SPC complex (ins-SPC) with increased lipophilicity. The following three SEDDSs: MCT(MAPC) (MC triglycerides and MAPC included), MCT(RH40) (MC triglycerides and Kolliphor® RH40 included) and LCT(MAPC) (long-chain triglycerides and MAPC included) were loading with ins-SPC (4% or 8% w/w of SPC). Three SEDDSs generated emulsions with droplet sizes between 50 and 470 nm and with zeta potentials between -5 to -25 mV in a simulated intestinal medium. Mucus-secreting Caco-2/HT29-MTX-E12 co-culture and Caco-2 monolayers were used as in vitro cell transport models to investigate insulin permeability. In comparison to insulin HBSS solution, MCT(MAPC) significantly increased the insulin permeability across co-culture and Caco-2 monolayers (2.0-2.5 × 10-7 cm/s). In an intra-jejunal (i.j.) instillation model in rats, MCT(RH40) significantly decreased the rat blood glucose after 0.5 h by 17.0 ±â€¯2.5% and for MCT(MAPC), it was 23.6 ±â€¯10.6%. Furthermore, a lipase inhibitor orlistat was incorporated into MCT(MAPC) to evaluate the effect of lipid digestion on insulin absorption. Results indicated that the incorporation of orlistat did not significantly alter the in vivo insulin absorption. Overall, the SEDDS MCT(MAPC) composed of natural PEs (MAPC and MC glycerides) and synthetic PE (LAB) significantly increased the intestinal absorption of insulin upon i.j. instillation. Although it is not possible to conclude if a single PE is dominating the intestinal absorption of insulin, MCT(MAPC) seems to have the potential for oral insulin delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes/química , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Animais , Células CACO-2 , Técnicas de Cocultura , Emulsões , Glicerídeos/química , Células HT29 , Humanos , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Absorção Intestinal , Jejuno/metabolismo , Masculino , Modelos Biológicos , Monoglicerídeos/química , Orlistate/administração & dosagem , Orlistate/farmacologia , Tamanho da Partícula , Permeabilidade , Fosfatidilcolinas/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...