Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 7: 100556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637077

RESUMO

Quinoa is a pseudo-cereal with great nutritional and functional qualities, serving as an excellent substitution to develop quinoa-containing foods. This study aimed to explore the influence of quinoa flour substitution on quality characteristics of wheat flour (WF). WF was substituted with different level of quinoa core flour, ground quinoa whole flour and recombined quinoa whole flour. Increasing levels of quinoa flour in WF declined dough swelling index, while increased falling number of composite flours. Besides, quinoa flour substitution considerably decreased the chemical forces of gluten in composite flours. The proportions α-helix and ß-sheets reduced, while the random coil proportion increased in gluten secondary structure. SEM images revealed that the gluten network structure was severely damaged. Our findings indicated that substitution of WF with quinoa flours was promising to be developed as an ingredient for food products.

2.
Foods ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509821

RESUMO

In this study, ultra-high-pressure sterilization (UHPS) of Xinli No. 7 juice (XL7) was explored and optimized. A challenge to implement UHPS in juice as a full alternative to thermal treatment could be represented by the adoption of a pressure level of up to 500 MPa for 20 min at one cycle followed by the packaging in aseptic conditions. It was found that UHPS and HS treatments could effectively kill the microorganisms in XL7 juice but HS treatment would inevitably lose the nutritional quality in the juice, while UHPS treatment could better maintain the glyconic acid content, functional components, and antioxidant activity and reduce Browning degree and improve the stability of XL7 juice. The deterioration rate of UHPS and HS-treated XL7 juice increased with the increased storage temperature. The predicted shelf life of UHPS and HS-treated XL7 juice was 68 and 41 days at 4 °C, respectively. Collectively, UHPS treatment combined with low-temperature storage might be an effective way to prolong the shelf life of XL7 juice.

3.
Food Res Int ; 169: 112878, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254326

RESUMO

The aim of this study was to investigate the effects of extruded multigrain (Tartary buckwheat, oat and black bean) powder product (MG) fed with a high-fat-diet (HFD) on metabolism and gut microbiota modulation of mice. Thirty C57BL/6J mice were fed a normal diet (n = 10), HFD (n = 10) or HFD replacing 40% MG (HFMG, n = 10) for six weeks. The results showed that MG reduced the weight gain of HFD-induced mice, alleviated the accumulation of epididymal- and perirenal fat, improved the glucose tolerance, and reduced the serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Histopathological observation showed that the number and size of fat vacuoles in liver cytoplasm were significantly reduced, the thickness of colon muscle was increased, and the cells were closely arranged after the intervention of HFMG. Moreover, the intervention of HFMG could promote the release of butyric acid in short chain fatty acids, improve the disorder of intestinal flora in HFD-induced mice, increase the relative abundance of Bacteroidetes, while reduce the relative abundance of Firmicutes, which may have a positive effect on inhibiting obesity induced by HFD. This study could provide a theoretical basis for improving the economic added value of extruded MG powder-based products and preventing chronic diseases such as obesity.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Pós , Camundongos Endogâmicos C57BL , Obesidade , Dieta Hiperlipídica/efeitos adversos , Colesterol
4.
Polymers (Basel) ; 15(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37050378

RESUMO

This work was investigated to prepare a reinforcing composite packaging film composited of soy protein/polyvinyl alcohol (PVA) and nano-TiO2. First, different film compositions were designed by the particle size of nano-TiO2, concentration of nano-TiO2, concentration of polyvinylpyrrolidone (PVP, a dispersing agent for nano-TiO2), and pH of film casting solution. Then, the film composition that yielded the optimal physical properties was identified using orthogonal array design single-factor experiments, considering its physical properties, including tensile strength, elongation, water absorption, water vapor transmission, oxygen permeation, thermal property, and film morphology. The results displayed that the optimal film composition was (1) soy protein/PVA film with 2.5 wt% nano-TiO2, (2) 30 nm nano-TiO2 particle size, (3) 1.5 wt% PVP, and (4) pH 6.0 of film-forming solution. It yielded tensile strength of 6.77 MPa, elongation at break rate of 58.91%, and water absorption of 44.89%. Last, the films were characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC). SEM analysis showed that compared with the film without TiO2, the film containing TiO2 has a smoother surface, and DSC determined that adding nano-TiO2 can improve the thermostability of soy protein/PVA film. Therefore, the film prepared in this paper is expected to provide a new theoretical basis for use in the packaging industry.

5.
Front Nutr ; 10: 1126562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908901

RESUMO

The bioreactor based on solid-state fermentation technology has been developed for vinegar production, standardization of fermentation process and stabilization of vinegar quality. The microbial community diversity, and volatile compounds of six cultivars of vinegar samples fermented in a self-designed solid-state fermentation bioreactors were investigated using Illumina MiSeq platform and gas chromatography mass spectrometry (GC-MS) technology. The correlations between the richness and diversity of microbiota and volatile profiles, organic acids, as well as physicochemical indicators were explored by R software with the coplot package. The findings indicated that Acetobacter, norank-c-Cyanobacteria, and Weissella played key roles during fermentation process. Norank-f-Actinopolyporaceae, norank-c-Cyanobacteria, Pediococcus, and Microbacterium had significant correlations with the physicochemical characteristics. The most common bacterial species were associated with a citric acid content, whereas the least number of bacterial species correlated with malic acid content. Findings could be helpful for the bioreactor optimization, and thus reaching the level of pilot scale and industrialization.

6.
Curr Res Food Sci ; 5: 1243-1250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032044

RESUMO

Anthocyanins are attractive alternatives to colorants; however, their low color stability hinders practical application. Copigmentation can enhance both the color intensity and color stability of complexes. Herein, we report an investigation of copigmentation reactions between purple sweet potato anthocyanins (PSA1) and phenolic acids (tannic, ferulic, and caffeic acids) or fatty acids (tartaric and malic acids) at pH 3.5. The effects of the mole ratios of the copigment and the reaction temperature were examined. In addition, quantum mechanical computations were performed to investigate molecular interactions. The optimum PSA:copigment molar ratio was found to be 1:100. The strongest bathochromic and hyperchromic effects were observed for copigmentation with tannic acid (Tan), which might be attributable to the fact that its HOMO-LUMO energy gap was the smallest among the investigated copigments, and because it has a greater number of phenolic aromatic and groups to form more van der Waals and hydrogen bond interactions. However, the formation of the PSA-caffeic acid (Caf) complex was accompanied by the greatest drop in enthalpy (-33.18 kJ/mol) and entropy (-74.55 kJ/mol), and this was the most stable complex at 90 °C. Quantum mechanical calculations indicated that hydrogen bonds and van der Waals force interactions contributed to the color intensification effect of copigmentation. These findings represent an advancement in our understanding of the properties of PSA, expanding the application scope of this natural product.

7.
Food Chem ; 396: 133691, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842999

RESUMO

Anthocyanins are attractive alternatives to synthetic colorants, but their low stability impedes practical applications. Intermolecular copigmentation can enhance both color intensity and stability. Herein, the copigmentation interactions of Kyoho grape skin anthocyanins (KSA) or cyanidin-3-O-glucoside (Cy-G) with organic acids were investigated. Color enhancement was evaluated at different acid molar ratios and treatment temperatures. The optimal copigmentation effects were observed for KSA/tannic acid (1:150) and Cy-G/tannic acid (1:100). Based on enthalpy variation, KSA/ferulic acid and Cy-G/ferulic acid exhibited the highest stability. The distinct color differences observed in the presence of different acids were attributed to structural effects. The influence of ferulic acid on various anthocyanins was also evaluated using theoretical approaches. Owing to steric hindrance, the acyl groups in KSA affected the spatial conformation, hydrogen bonding, and van der Waals interactions of the complexes. Further, hydroxyl groups decreased complex stability. These findings contribute to furthering the understanding of copigmentation effects.


Assuntos
Antocianinas , Vitis , Antocianinas/química , Cor , Taninos , Termodinâmica
8.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566863

RESUMO

This work was dedicated to improving the utilization rate of yellow peach peel (YPP), with the addition of sodium alginate (SA) and glycerol (G) to prepare a biodegradable antioxidant film. First, the formulation of the film was optimized via response surface methodology (RSM) combined with the multi-index comprehensive evaluation method, considering physical properties including tensile strength (TS), elongation at break (E%), water solution (WS) and light transmittance (T). The RSM results displayed the best process condition was 2.50% of YPP, 0.60% SA and 0.80% of G (based on water) and compared with pure YPP film and YPP-SA film, the optimized (YPP-SA-G) film presented excellent properties with TS of 21.52 MPa, E of 24.8%, T of 21.56% on 600 nm, and WS of 41.61%, the comprehensive evaluation score of the film was 0.700. Furthermore, the films were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR analysis showed the main interaction of hydrogen between YPP, SA and G make the film has excellent compatibility, and the SEM images displayed that the film was dense and compacted with a little roughness. In addition, the optimized film had excellent thermal stability, suggested by TGA and XRD showed that the film's crystal structure has been changed significantly when the SA and G were mixed in. The TPC and the ability of DPPH radical scavenging of the YPP-SA-G film was 17.68 mg·g-1 of GAE and 18.65%, then potential packaging applications were evaluated using soybean oil and the YPP-SA-G antioxidant film significantly decreased peroxide value (POV) to delay oil oxidation during storage. Therefore, the YPP-SA-G film is expected to provide a new theoretical basis for the use of food processing by-products and the packaging industry.

9.
Food Res Int ; 141: 110025, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641954

RESUMO

A solution of whey protein isolate was combined with blackcurrant concentrate via spray-drying and freeze-drying techniques separately to develop novel protein ingredients, (SWB and FWB). Chemical compositions, colour profiles, total anthocyanin content and encapsulation efficacy of the protein ingredients were evaluated. An in vitro digestion process was employed to observe the changes in total phenolic content, antioxidant activity, and predictive in vitro glycaemic response of the protein ingredients. The half maximal inhibitory concentration (IC50) towards α-Amylase, and a molecular docking study on the interactions of α-Amylase with anthocyanins, were both performed to investigate the potential mechanisms of hypoglycaemic properties of these protein ingredients. The protein contents of SWB and FWB were 67.94 ± 0.47% and 68.16 ± 0.77%, respectively. Blackcurrant concentrate significantly (p < 0.001) changed the colour profiles of whey protein isolate. SWB obtained a higher total phenol content (3711.28 ± 4.36 µg/g), total anthocyanin content (85390.80 ± 162.81 µg/100 g), and greater encapsulation efficacy (99.64 ± 0.16%) than those of FWB (3413.03 ± 20.60 µg/g, 64230.24 ± 441.08 µg/100 g, and 95.43 ± 0.14%, respectively). Total phenolic content and antioxidant activities of SWB and FWB decreased after the in vitro digestion. The reducing sugar released during the in vitro digestion from SWB and FWB decreased compared with their corresponding controls (SWC and FWC). FWB (IC50 = 73.46 µg/mL) exhibited stronger α-Amylase inhibitory activity than SWB (IC50 = 81.46 µg/mL). Different anthocyanins differed from binding affinities to bind with the active sites of α-Amylase via formation of hydrogen bonds. This study suggested whey protein encapsulated-blackcurrant concentrate might be an innovative food product with improved nutritional profiles. Both spray- and freeze-drying are potential options to this encapsulation.


Assuntos
Ribes , Antocianinas , Liofilização , Simulação de Acoplamento Molecular , Proteínas do Soro do Leite
10.
Food Res Int ; 141: 110154, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33642020

RESUMO

This investigation aimed to study the potential mechanism of L-arginine (L-Arg) on the heat-induced phase separation phenomenon of myosin from the perspective of conformational changes of myosin. L-Arg ameliorated the phase separation of myosin after a two-step heating procedure via suppression of heat-induced aggregation of myosin. The effect of L-Arg on the heating of myosin at high temperatures (75-85 °C) was more pronounced than that in the setting stage (35-45 °C), suggesting that the ameliorative effects of L-Arg on the heat-induced phase separation of myosin are mainly attributed to the inhibition of rod-rod cross-linking between denatured myosin molecules. Additionally, L-Arg without pH modification exhibited an increased ability to suppress the gelation of myosin compared with pH modification, indicating that both pH effects and the particular structure of L-Arg play noticeable roles in the suppression of myosin gelation. Far-UV circular dichroism, intrinsic fluorescence spectroscopy and differential scanning calorimetry demonstrated that L-Arg induced the absence of ordered secondary structures of myosin molecules, especially ß-sheets, and thus generated a looser protein structure, which may represent the dominant suppression mechanisms of L-Arg on the heat-induced aggregation of myosin. This work provided support for the use of L-Arg as a food additive, and the results of this study will be attractive to the meat and beverage products.


Assuntos
Temperatura Alta , Miosinas , Animais , Arginina , Varredura Diferencial de Calorimetria , Cyprinidae , Carne
11.
Hortic Res ; 8(1): 35, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33517348

RESUMO

Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.

12.
Hortic Res ; 7(1): 199, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328440

RESUMO

Snake gourd (Trichosanthes anguina L.), which belongs to the Cucurbitaceae family, is a popular ornamental and food crop species with medicinal value and is grown in many parts of the world. Although progress has been made in its genetic improvement, the organization, composition, and evolution of the snake gourd genome remain largely unknown. Here, we report a high-quality genome assembly for snake gourd, comprising 202 contigs, with a total size of 919.8 Mb and an N50 size of 20.1 Mb. These findings indicate that snake gourd has one of the largest genomes of Cucurbitaceae species sequenced to date. The snake gourd genome assembly harbors 22,874 protein-coding genes and 80.0% of the genome consists of repetitive sequences. Phylogenetic analysis reveals that snake gourd is closely related to sponge gourd but diverged from their common ancestor ~33-47 million years ago. The genome sequence reported here serves as a valuable resource for snake gourd genetic research and comparative genomic studies in Cucurbitaceae and other plant species. In addition, fruit transcriptome analysis reveals the candidate genes related to quality traits during snake gourd fruit development and provides a basis for future research on snake gourd fruit development and ripening at the transcript level.

13.
Theor Appl Genet ; 133(5): 1753-1762, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32211918

RESUMO

Tomato has emerged as the model system for investigations into the regulation of fleshy-fruit ripening and senescence, and the ripening process involving the coordinated regulation at the gene/chromatin/epigenetic, transcriptional, post-transcriptional and protein levels. Noncoding RNAs play important roles in fruit ripening as important transcriptional and post-transcriptional regulatory factors. In this review, we systematically summarize the recent advances in the regulation of tomato fruit ripening involved in ethylene biosynthesis and signal transduction, fruit pigment accumulation, fruit flavor and aroma, fruit texture by noncoding RNAs and their coordinate regulatory network model were set up and also suggest future directions for the functional regulations of noncoding RNAs on tomato fruit ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Pigmentação , Proteínas de Plantas/genética , Fatores de Transcrição/genética
14.
RSC Adv ; 9(34): 19828-19836, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519369

RESUMO

This work studied the effects of KGM with different degrees of deacetylation (DDs) on the physicochemical properties of silver carp (Hypophthalmichthys molitrix) surimi gels. Compared with KGM, deacetylated KGM (DKGM) weakened the water-holding capacity, but increased the gel strength of surimi gels. The storage modulus (G') and loss modulus (G'') of surimi showed an upward trend, and the aggregation rate of surimi with DKGM changed. The number of ionic bonds of mixed surimi gels increased on the whole, but those of hydrogen bonds declined; a hydrophobic interaction was the main driving force, and improved with the DDs of DKGM. FT-IR results indicated that the deacetylation of KGM had a slight influence on the secondary structure of the proteins. SDS-PAGE results showed that DKGM enhanced the intensity of the main heavy chains of myosin and actin. Examination of the network structure of the surimi gels revealed that DKGM might combine around the filaments of myofibrillar proteins like a rosary through hydrophobic interactions and hydrogen bonding. As a consequence, the myfibrillar protein aggregation was changed and the microstructures of the surimi became more compact and fibrous. The results indicated that the deacetylation of KGM led to an increase in hydrophobicity, which influenced the hydrophobic interaction of the myofibrillar proteins. As a result, the aggregation of the myofibrillar proteins was promoted and the physico-chemical properties of the surimi gel were improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...