Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(12): 1587-1590, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224243

RESUMO

A novel In2O3@NC catalyst has been prepared and employed in CO2 electroreduction to HCOOH. The C and N species successfully improve the electronic structure of In2O3 and enhance the adsorption ability of CO2. The In2O3@NC catalyst exhibits a remarkably high FEHCOOH of 97.1%, jtotal of 190 mA cm-2, and stability for 60 h.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903787

RESUMO

Lithium-sulfur batteries have attracted extensive attention owing to their environmental friendliness, abundant reserves, high specific discharge capacity, and energy density. The shuttling effect and sluggish redox reactions confine the practical application of Li-S batteries. Exploring the new catalyst activation principle plays a key role in restraining polysulfide shuttling and improving conversion kinetics. In this respect, vacancy defects have been demonstrated to enhance the polysulfide adsorption and catalytic ability. However, inducing active defects has been mostly created by anion vacancies. In this work, an advanced polysulfide immobilizer and catalytic accelerator is developed by proposing FeOOH nanosheets with rich Fe vacancies (FeVs). The work provides a new strategy for the rational design and facile fabrication of cation vacancies to improve the performance of Li-S batteries.

3.
RSC Adv ; 12(15): 9310-9322, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424842

RESUMO

Given their excellent reusability and environmental friendliness, solid acid catalysts have drawn considerable attention in acid-catalyzed reactions. However, the rational design and synthesis of solid acid catalysts with abundant Brønsted acid sites remains a challenge. In this paper, KIT-6, Zr-KIT-6, Mo-KIT-6, and ZrMo-KIT-6 solid acid catalysts are designed and synthesized. The textural properties, chemical bonds, and acidic properties of these catalysts are explored. Theoretical calculations are conducted to explore the formation mechanism of Brønsted acid sites. The theoretical trend of acidity is consistent with the experimental result of acidity and further demonstrates that the synergistic effect of Zr and Mo species improves the formation of Brønsted acid sites. The as-obtained ZrMo-KIT-6 solid acid catalysts are employed in Friedel-Crafts benzylation reaction, and the outstanding catalytic performance of the ZrMo-KIT-6 catalyst indicates that it is an excellent Brønsted solid acid catalyst.

4.
Molecules ; 25(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325911

RESUMO

Plutonium mononitride is one of the main fuels for Generation IV reactors and can be prepared from nitrogenation of plutonium hydride. We investigated the adsorption and dissociation of nitrogen on PuH2 (111) surface to elaborate the initial stage of nitrogenation. The adsorption energies varied greatly with respect to the adsorption sites and orientations of the adsorbed molecule. The nitrogen exhibited preferential adsorption above the ccp site, where the molecular nitrogen was nearly parallel to the PuH2 surface and pointed to the nearest Pu atom. The orbital hybridization and the electrostatic attraction between the Pu and N weakened the N-N bond in the adsorbed molecule. The mechanism of the dissociation process was investigated within transition state theory, and the analysis of the activation barrier indicated that dissociation of nitrogen is not the rate-determining step of nitrogenation. These findings can contribute to a better understanding of the nuclear fuel cycle.


Assuntos
Teoria da Densidade Funcional , Nitrogênio/química , Plutônio/química , Adsorção , Hidrogênio/química , Energia Nuclear , Eletricidade Estática
5.
ChemSusChem ; 13(11): 2973-2980, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32017427

RESUMO

Porous covalent organic frameworks (COFs), as an emerging material, have the characteristics of high stability, large series of components, easy synthesis, modification, and adjustable amplitude. They have the potential to become good catalysts. Bromine, as a halogen, has attracted intensive interest for the modification of photocatalysts for photocatalytic reactions. It is feasible to enhance the activity and selectivity of the material by facile functionalization of the reticular parent structure's electron-withdrawing groups. In addition, the conjugation effect of bromine, further delocalizing the electrons of the COF, is beneficial to the progress of many photocatalytic reactions. Reports on the modification of COFs by bromine functional groups to improve the catalytic performance have not been found so far. Here, TAPP [5,10,15,20-tetrakis(4-aminophenyl)porphyrin] and 2,5-dibromo-1,4-benzenedialdehyde instead of terephthalaldehyde were chosen to synthesize a porphyrin-based COF (TAPBB-COF) by the solvothermal method. As expected, the valence band (VB) of TAPBB-COF is thus adjusted to a more suitable position. Additionally, the CO production when using TAPBB-COF under full-wavelength light for 12 h was 295.2 µmol g-1 , which was three times that of COF-366, and the new material has good recycling stability and selectivity (95.6 %). Theoretical calculations indicate that the nitrogen of the porphyrin ring and the Schiff base, and the bromine in TAPBB-COF contribute greatly to the activation of H2 O and the conversion of CO2 in the photoreaction.

6.
J Chem Phys ; 150(2): 024701, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646692

RESUMO

The excited states of a series of semiconducting zigzag (n, 0) tubes are studied using the GW method and the Bethe-Salpeter equation within the ab initio many-body perturbation theory. The optical variation rule of the excitation energy with the tube diameter exhibits a family pattern, which arises from the electronic structure of the pristine tube and depends on the value of n mod 3. The introduction of single vacancy and Stone-Wales defects with different orientations affords an effective route for modulating the band structures and optical spectra, resulting in the variation of the selection rules of the excitons and turning dipole-forbidden excitons into dipole-allowed ones. The new localized impurity states in defected tubes will provide additional optically allowed transitions and give rise to pronounced satellite red-shifted peaks. These findings provide inspiration for the tune of optical properties of carbon nanotubes in the future for applications in optoelectronics.

7.
Dalton Trans ; 48(3): 1051-1059, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30601501

RESUMO

A covalent organic framework (COF) featuring a unique light porous structure and silver nanoparticles shows high efficiency in the degradation of environmental pollutants. However, the combination of a COF with silver nanoparticles has never been reported until now. Toward this end, 2,4,6-tris-(4-formylphenoxy)-1,3,5-triazine (TPT-CHO) and hydrazine hydrate were selected as the construction units of the COF material (TPHH-COF), which possesses rich nitrogen and oxygen sites. Then a new type of composite catalyst (Ag@TPHH-COF) was successfully obtained by solution infiltration. The obtained materials were also fully characterized by standard methods. The results showed that the silver nanoparticles (with diameters of 5 ± 3 nm) were uniformly dispersed on the surface and in the interlayer gaps of the TPHH-COF substrate. Catalytic studies showed that Ag@TPHH-COF could catalyze the reduction of the various nitroaromatic compounds (NACs) with high efficiency, such as 4-nitrophenol, 2-nitrophenol, 4-nitroaniline, nitrobenzene, 4-nitrotoluene and 1-butyl-4-nitrobenzene. Ag@TPHH-COF could also catalyze the reduction of organic dyes such as Rhodamine B (RhB), Methylene Blue (MB), Methyl Orange (MO) and Congo Red (CR). Moreover, Ag@TPHH-COF has good reusability and high recovery.

8.
Dalton Trans ; 47(12): 4191-4197, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29479615

RESUMO

A new triazine-based covalent organic polymer (named COP-NT), which showed high catalytic activities for the degradation of acidic and basic dyes, is synthesized. Its structure characteristics were fully investigated, which featured large specific surface area, homogeneous porosity, strong visible light absorption, excellent thermal stability and semiconductor performance. The as-prepared COP-NT exhibits good chemical stability both in acidic and alkaline aqueous solutions, which could be used as an efficient photocatalyst for the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB). The Ea values for the degradation of MO, RhB or MB are 9.40 kJ mol-1, 30.94 kJ mol-1 or 17.54 kJ mol-1, respectively. Furthermore, COP-NT showed excellent reusability in degrading all the above dyes without obvious performance decay.

9.
J Chem Phys ; 140(21): 214315, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908016

RESUMO

The excited states of small-diameter diamond nanoparticles in the gas phase are studied using the GW method and Bethe-Salpeter equation (BSE) within the ab initio many-body perturbation theory. The calculated ionization potentials and optical gaps are in agreement with experimental results, with the average error about 0.2 eV. The electron affinity is negative and the lowest unoccupied molecular orbital is rather delocalized. Precise determination of the electron affinity requires one to take the off-diagonal matrix elements of the self-energy operator into account in the GW calculation. BSE calculations predict a large exciton binding energy which is an order of magnitude larger than that in the bulk diamond.

10.
Phys Rev Lett ; 112(22): 228301, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949791

RESUMO

Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.


Assuntos
DNA/química , Modelos Químicos , Água/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Óptica e Fotônica/métodos , Análise Espectral
11.
Phys Rev Lett ; 111(13): 137401, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116815

RESUMO

Recent experiments have indicated that dopants and defects can trigger new redshifted photoluminescence (PL) peaks below the E11 peak in single-walled carbon nanotubes (SWCNTs). To understand the origin of the new PL peaks, we study theoretically the excited-state properties of SWCNTs with some typical dopants and defects by ab initio many-body perturbation theory. Our calculations demonstrate that the Stokes shift in doped centers can be as large as 170 meV, which is much larger than that of intact SWCNTs and must be taken into account. We find dipole-allowed transitions from localized midgap and shallow impurity levels, which can give rise to pronounced PL peaks. Dark excitons, on the other hand, seem to have oscillator strengths that are too small to account for the new PL peaks.


Assuntos
Medições Luminescentes/métodos , Modelos Químicos , Nanotubos de Carbono/química , Absorção , Hidrogênio/química , Oxigênio/química , Processos Fotoquímicos
12.
J Phys Chem B ; 115(26): 8409-16, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21667952

RESUMO

Organic semiconductors to date having cofacial stacking motif are scarce compared to those having herringbone motif. Recently, Ahmed and co-workers have reported a series of novel n-type bisindenoanthrazolines (BIDAs) [Chem. Mater. 2010, 22, 5786], among which DADF and DADK adopt different slipped cofacial arrangements exhibiting distinct electron transport abilities. Here, we performed computational studies to understand the relationship between charge transport and molecular packing for these BIDAs molecules. This work focuses on the intrinsic molecular factors required for efficient and long-range charge transfer. Unlike the previous studies only focusing the charge injection barriers or the carrier mobilities, herein, we present the notion that lower electron injection barrier and higher intrinsic electron mobility should be both satisfied to achieve better n-type OFETs. We also note that the actual mobility can be significantly underestimated due to the limitation of the space-charge limited current method. Through computational modeling, we rationalized the superior electron conductivity of DADK and also shed light on the favorable or undesirable properties for efficient charge transport of BIDAs. Another key finding is that the intrinsic electron and hole mobilities are quite deviated from each other rather than comparable in current mobility calculations.

13.
J Phys Chem A ; 114(13): 4689-96, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20225904

RESUMO

A computational study with the B3LYP density functional theory was carried out to study the reaction mechanism for the cycloisomerization of allenes catalyzed by Au(I) and Au(III) complexes. The catalytic performance of Au complexes in different oxidation states as well as the effects of the counterion on the catalytic activities has been studied in detail. Our calculations show that the catalytic reaction is initiated by coordination of the Au(I) or Au(III) catalyst to the distal double bond of allene and activation of allene toward facile nucleophilic attack, then 3-pyrroline obtained via two-step proton shift, followed by demetalation. On the basis of our calculations, H shifts are key steps of the catalytic cycle, which are significantly affected by the gold oxidation state, counterion, ligands, and assistant catalyst. AuCl is found to be more reactive than AuCl(3); however, the Au(III)-catalyzed path does not involve an oxidation state change from Au(III) to Au(I). Our calculated results rationalize the experimental findings well and overthrow the previous conjecture about Au(I) serving as the catalytically active species for Au(III)-catalyzed cycloisomerization.


Assuntos
Alcadienos/química , Aminas/química , Compostos de Ouro/química , Ouro/química , Algoritmos , Aminação , Catálise , Domínio Catalítico , Ciclização , Íons/química , Isomerismo , Modelos Químicos , Oxirredução , Prótons , Teoria Quântica , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...