Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 11: 1-14, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34938908

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer. However, how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved. Here, we report a kind of targeted core-shell nanoparticles (NPs) carrying dual plasmids (pHR-pCas9) for precise CCCTC-binding factor (CTCF) gene insert to circumvent metastatic breast cancer. The targeted core-shell NPs carrying pHR-pCas9 can accomplish γGTP-mediated cellular uptake and endosomal escape, facilitate the precise insert and stable expression of CTCF gene, inhibit the migration, metastasis, and colonization of metastatic breast cancer cells. Besides, the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein, followed by down-regulating stomatin (STOM) protein. The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.

2.
Adv Healthc Mater ; 10(18): e2100590, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34292673

RESUMO

As an important part of tumor microenvironment, tumor associated macrophages (TAMs) play a vital role in the occurrence, development, invasion, and metastasis of many malignant tumors and can significantly promote the formation of tumor blood vessels and lymphatic vessels, hence TAMs are greatly associated with poor prognosis. The research on nanomedicine has achieved huge progress, and nano-drugs have been widely utilized to treat various diseases through different mechanisms. Therefore, developing nano-drugs that are based on TAMs-associated anti-tumor mechanisms to effectively suppress tumor growth is expected to be a promising research filed. This paper introduces relevant information about TAMs in terms of their origin, and their roles in tumor genesis, development and metastasis. Furthermore, TAMs-related anti-tumor nano-drugs are summarized. Specifically, a wide range of nano-drugs targeting at TAMs are introduced, and categorized according to their therapeutic mechanisms toward tumors. Additionally, various nano delivery platforms using TAMs as cell carriers which aim at inhibiting tumor growth are reviewed. These two parts elucidate that the exploration of nanomedicine is essential to the study on TAMs-related anti-tumor strategies. This review is also intended to provide novel ideas for in-depth investigation on anti-tumor molecular mechanisms and nano-drug delivery systems based on TAMs.


Assuntos
Nanomedicina , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Macrófagos Associados a Tumor
3.
Mol Ther Oncolytics ; 18: 396-408, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32913889

RESUMO

Relapse of cancer is associated with multidirectional differentiation and unrestricted proliferative replication potential of cancer stem cells. Herein, we propose the plastic differentiation strategy for irreversible differentiation of cancer stem cells; further, salinomycin and its newly constructed functional liposomes are used to implement this strategy. Whole gene, cancer stem cell-related RNA, and protein expression analyses reveal that salinomycin induces the cancer stem cells into normal cells, dormant cells, and mature cancer cells. Besides, the results indicate that the gatekeeper is related to the inhibition of the protein kinase C (PKC) α signaling pathway. The differentiated normal or dormant cells are incorporated into normal tissue, whereas the rest are killed by chemotherapy. The findings would offer the evidence for plastic differentiation of cancer stem cells and propose a novel strategy for cancer therapy.

4.
Nanomaterials (Basel) ; 10(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429472

RESUMO

Regular chemotherapy cannot eliminate leukemic cells, due to the sparse distribution of cancer cells in leukemia patients. Here, we report a precise nanostructure of folate-overhung mitoxantrone DNA tetrahedron that enables the treatment of leukemic cells by targeted action. Folate is used as a targeting molecule and synthesized with DNA strand in forming the folate-overhang DNA complement, and the complement is then separately base-paired onto six sides of the fabricated DNA tetrahedron. Mitoxantrone is used as an anticancer agent and intercalated into the double strands of the folate-overhung DNA tetrahedron for drug loading. The evaluation studies are performed on leukemia BALL-1 and K562 cells. The results demonstrate that the folate-overhung mitoxantrone DNA tetrahedra (approximately 25 nm) are able to target leukemic cells, transport across the nuclei membrane, induce the apoptosis, and enhance the overall efficacy of treating leukemic cells in vitro and in leukemia-bearing mice. This study provides a potential drug-containing DNA nanostructure, to clean the sparsely distributed leukemic cells in patients.

5.
Int J Mol Sci ; 20(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060324

RESUMO

Antigen peptides and adjuvants have been extensively investigated for cancer immunotherapy, and they are expected to elicit specific immune responses for cancer treatment. However, the anti-cancer efficacy of antigen peptide and adjuvant-based cancer vaccines has been limited due to the inefficient delivery to draining lymph nodes after administration. Therefore, it is necessary to develop a suitable delivery system to transport antigen peptides and adjuvants. Here, we report a novel type of nanostructured lipovaccines for the treatment of melanoma by delivering antigen peptide (SL9) and oligodeoxynucleotide adjuvant (CpG) to the lymphatic vessels and to the draining lymph node. The SL9-CpG lipovaccines were characterized using dynamic laser scattering (DLS) and transmission electron microscopy (TEM). The lymph uptake, immune response elicitation and treatment effects were evaluated on melanoma-bearing C57BL/6 mice using flow cytometry (FCM), enzyme-linked immunosorbent assay (ELISA) and tumor inhibitory efficacy. The SL9-CpG lipovaccines were uniform with a nanoscale size (~70 nm), had high encapsulation efficiency, and exhibited effective lymph uptake, resulting in activation of specific cytotoxic CD8+ T cells, and release of IFN-γ, and a robust inhibition of tumor growth. Therefore, the nanostructured SL9-CpG lipovaccines offer a promising strategy for melanoma treatment.


Assuntos
Vacinas Anticâncer/imunologia , Glicina/análogos & derivados , Imunomodulação , Melanoma/imunologia , Melanoma/terapia , Peptídeos/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Glicina/química , Glicina/imunologia , Humanos , Imunoterapia , Linfonodos/imunologia , Melanoma/metabolismo , Camundongos , Peptídeos/química , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
RSC Adv ; 9(23): 13186-13200, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520771

RESUMO

Triple negative breast cancer (TNBC) has been characterized as a very heterogeneous subtype, and is more invasive and non-expressing of the genes for the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu, with poor prognosis, and hence the efficacy of regular chemotherapy is very limited. Here, we report a kind of double strand RNA (dsRNA) mPEI nanoparticle for treatment of invasive TNBC. The studies were performed on TNBC cells in vitro and in TNBC cancer-bearing mice. The results showed that dsRNA mPEI nanoparticles were able to effectively transfect cells, and demonstrated a strong capability in knocking-down the Fra-1 gene and down-stream MMP-1 and MMP-9 genes in TNBC cells and TNBC cancer-bearing mice, thereby inhibiting the invasion and migration of cells. After intratumoral injection, dsRNA mPEI nanoparticles exhibited a robust anticancer efficacy in TNBC cancer-bearing mice, and the anticancer efficacy was superior to that of paclitaxel. In conclusion, dsRNA mPEI nanoparticles are able to effectively treat aggressive TNBC, and the mechanism studies reveal that they take effect by knocking-down Fra-1 relevant genes, hence interfering in transcription and translation of the genes, which are necessary for growth and metastasis of TNBC. Therefore, the present study offers a new and promising formulation and strategy for effective treatment of TNBC.

7.
Int J Nanomedicine ; 13: 8119-8135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555230

RESUMO

BACKGROUND: The existing chemo/radiotherapy fail to eliminate cancer cells due to the restriction of either drug resistance or radio tolerance. The predicament urges researchers to continuously explore alternative strategy for achieving a potent curative effect. METHODS: Functional chlorin gold nanorods (Ce6-AuNR@SiO2-d-CPP) were fabricated aiming at treating breast cancer by photothermal/photodynamic therapy (PTT/PDT). The nanostructure was developed by synthesizing Au nanorods as the photothermal conversion material, and by coating the pegylated mesoporous SiO2 as the shell for entrapping photosensitizer Ce6 and for linking the D-type cell penetrating peptide (d-CPP). The function of Ce6-AuNR@SiO2-d-CPP was verified on human breast cancer MCF-7 cells and MCF-7 cells xenografts in nude mice. RESULTS: Under combinational treatment of PTT and PDT, Ce6-AuNR@SiO2-d-CPP demonstrated a strong cytotoxicity and apoptosis inducing effects in breast cancer cells in vitro, and a robust treatment efficacy in breast cancer-bearing nude mice. The uptake mechanism involved the energy-consuming caveolin-mediated endocytosis, and Ce6-AuNR@SiO2-d-CPP in PTT/PDT mode could induce apoptosis by multiple pathways in breast cancer cells. CONCLUSION: Ce6-AuNR@SiO2-d-CPP demonstrated a robust efficacy in the treatment of breast cancer by photothermal/photodynamic therapy. Therefore, the present study could offer a new promising strategy to treat the refractory breast cancer.


Assuntos
Neoplasias da Mama/terapia , Ouro/química , Hipertermia Induzida , Nanotubos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Camundongos , Camundongos Nus , Fármacos Fotossensibilizantes/química , Fototerapia , Porfirinas/química , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nanomaterials (Basel) ; 8(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304783

RESUMO

The heterogeneity of breast cancer and the development of drug resistance are the relapse reasons of disease after chemotherapy. To address this issue, a combined therapeutic strategy was developed by building the nanostructured dihydroartemisinin plus epirubicin liposomes. Investigations were performed on human breast cancer cells in vitro and xenografts in nude mice. The results indicated that dihydroartemisinin could significantly enhance the efficacy of epirubicin in killing different breast cancer cells in vitro and in vivo. We found that the combined use of dihydroartemisinin with epirubicin could efficiently inhibit the activity of Bcl-2, facilitate release of Beclin 1, and further activate Bax. Besides, Bax activated apoptosis which led to the type I programmed death of breast cancer cells while Beclin 1 initiated the excessive autophagy that resulted in the type II programmed death of breast cancer cells. In addition, the nanostructured dihydroartemisinin plus epirubicin liposomes prolonged circulation of drugs, and were beneficial for simultaneously delivering drugs into breast cancer tissues. Hence, the nanostructured dihydroartemisinin plus epirubicin liposomes could provide a new therapeutic strategy for treatment of breast cancer.

9.
Artif Cells Nanomed Biotechnol ; 46(sup1): 1180-1190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29519164

RESUMO

The efficacy of anticancer drugs is rather limited in the treatment of brain glioma due to the hindrance of the blood-brain barrier (BBB). Herein, we reported an easy formulation of functional docetaxel nanomicelles for the treatment of brain glioma using a graft copolymer soluplus as basic material through dual-modifications with a glucose-lipid derivative and a dequalinium-lipid derivative. The studies were performed on brain glioma U87MG cells, in vitro BBB models and brain glioma-bearing nude mice. The functional docetaxel nanomicelles were approximately 100 nm. The results demonstrated that the functional docetaxel nanomicelles could transport across the BBB, enhance the cellular uptake, target to the mitochondria, induce the apoptosis, increase the cytotoxicity in the brain glioma cells, and extend survival span of the brain glioma-bearing mice. The action mechanisms were associated with dual-modifications by the glucose-lipid derivative and the dequalinium-lipid derivative, both of which are beneficial for the transport across the BBB. Furthermore, the modification with dequalinium-lipid derivative was able to target to the brain glioma cells and to the mitochondria. In conclusion, the functional docetaxel nanomicelles would be a promising formulation for the treatment of brain glioma, deserving further development for clinical trials.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Docetaxel/química , Docetaxel/farmacologia , Composição de Medicamentos/métodos , Glioma/tratamento farmacológico , Micelas , Nanoestruturas/química , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Docetaxel/metabolismo , Docetaxel/uso terapêutico , Glioma/patologia , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo
10.
Pharmacology ; 101(1-2): 43-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28988243

RESUMO

BACKGROUND: The metastasis of breast cancer is the leading cause of death, while lung metastasis is a major clinical phenomenon in patients with invasive breast cancer. The current treatment option comprising surgery, radiation, and standard chemotherapy cannot achieve a satisfactory effect on the treatment of lung metastasis of breast cancer. In this study, we report the potential of preventing lung metastasis of invasive breast cancer using the newly developed functional vincristine plus dasatinib liposomes. METHODS: The investigations were performed on invasive breast cancer MDA-MB-231 cells in vitro and in lung metastatic model of invasive breast cancer MDA-MB-231 cells in nude mice. RESULTS: The functional drug liposomes were able to induce cell cycle arrest at G2/M phase, induce apoptosis, inhibit adhesion, migration, and invasion of breast cancer cells in vitro, and prevent lung metastasis of breast cancer in nude mice. CONCLUSION: These findings indicate a potential clinical use of functional vincristine plus dasatinib liposomes for treating metastatic breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Dasatinibe/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Vincristina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dasatinibe/uso terapêutico , Feminino , Humanos , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Vincristina/uso terapêutico
11.
Sci Rep ; 7(1): 3487, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615716

RESUMO

Surgery and radiotherapy cannot fully remove brain glioma; thus, chemotherapy continues to play an important role in treatment of this illness. However, because of the restriction of the blood-brain barrier (BBB) and the regeneration of glioma stem cells, post-chemotherapy relapse usually occurs. Here, we report a potential solution to these issues that involves a type of novel multifunctional vinblastine liposomes equipped with transferrin receptor binding peptide TfR-T12 and octa-arginine conjugate stearyl-R8. Studies were performed on brain glioma and glioma stem cells in vitro and were verified in brain glioma-bearing mice. The liposomes were transported across the BBB, killing brain glioma and glioma stem cells via the induction of necrosis, apoptosis and autophagy. Furthermore, we reveal the molecular mechanisms for treating brain glioma and glioma stem cells via functionalized drug lipid vesicles.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Lipossomos/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Vimblastina/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/química , Camundongos , Oligopeptídeos/química , Receptores da Transferrina/química
12.
Int J Nanomedicine ; 12: 4163-4176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28615943

RESUMO

Currently, chemotherapy is less efficient in controlling the continued development of breast cancer because it cannot eliminate extrinsic and intrinsic refractory cancers. In this study, mitochondria were modified by functional epirubicin liposomes to eliminate refractory cancers through initiation of an apoptosis cascade. The efficacy and mechanism of epirubicin liposomes were investigated on human breast cancer cells in vitro and in vivo using flow cytometry, confocal microscopy, high-content screening system, in vivo imaging system, and tumor inhibition in mice. Mechanistic studies revealed that the liposomes could target the mitochondria, activate the apoptotic enzymes caspase 8, 9, and 3, upregulate the proapoptotic protein Bax while downregulating the antiapoptotic protein Mcl-1, and induce the generation of reactive oxygen species (ROS) through an apoptosis cascade. In xenografted mice bearing breast cancer, the epirubicin liposomes demonstrated prolonged blood circulation, significantly increased accumulation in tumor tissue, and robust anticancer efficacy. This study demonstrated that functional epirubicin liposomes could significantly induce programmed death of refractory breast cancer by activating caspases and ROS-related apoptotic signaling pathways, in addition to the direct killing effect of the anticancer drug itself. Thus, we present a simple nanomedicine strategy to treat refractory breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Epirubicina/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Caspases/metabolismo , Epirubicina/administração & dosagem , Feminino , Humanos , Lipossomos/administração & dosagem , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Adv Drug Deliv Rev ; 115: 46-56, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28433739

RESUMO

Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipossomos/administração & dosagem , Neoplasias/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/uso terapêutico , Humanos
14.
Oncotarget ; 8(25): 40906-40921, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28402948

RESUMO

Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Lipídeos/administração & dosagem , Peptídeo Natriurético Tipo C/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glioma/patologia , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeo Natriurético Tipo C/química , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vimblastina/química , Vinorelbina
15.
Int J Nanomedicine ; 11: 1131-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042063

RESUMO

The efficacy of chemotherapy for brain glioma is restricted by the blood-brain barrier (BBB), and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM) channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the treatment of intracranial glioma-bearing nude mice. Therefore, targeting epirubicin plus celecoxib liposomes could be a potential nanostructured formulation to treat gliomas and destroy their VM channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Lipossomos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Caspase 8/metabolismo , Celecoxib/administração & dosagem , Linhagem Celular Tumoral , Epirubicina/administração & dosagem , Glioma/patologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Masculino , Camundongos Nus , Recidiva Local de Neoplasia
16.
J Biomed Nanotechnol ; 12(7): 1404-420, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-29336535

RESUMO

The highly infiltrative nature of brain glioma makes total surgical removal of cancerous cells virtually impossible. Regular chemotherapy plays an important role in eradicating the residual cancer cells but is ineffective in treating brain glioma due to the hindrance of drug penetration into the tumor site by the blood brain barrier (BBB) and the regeneration of cancer cells by glioma stem cells (GSCs). In this study, functional targeting daunorubicin liposomes were developed by modifying the liposomes with distearoylphosphatidylethanolamine polyethylene glycol-polyethylenimine (DSPE-PEG2000PEI600 and a lipid-glucose derivative (DSPE-PEG2000-GLU). The studies were performed in brain glioma and glioma stem cells in vitro and in brain glioma-bearing mice inoculated with the glioma stem cells. The results showed that the functional targeting daunorubicin liposomes were able to significantly transfer across the BBB and exhibited an obvious efficacy in killing glioma and glioma stem cells in mice. The action mechanisms of the functional targeting daunorubicin liposomes were related to their properties: long-duration circulation in the blood system, transport capability across the BBB, concentrated accumulation in the brain glioma site, and increased internalization by malignant cells and their mitochondria. This functional drug formulation showed anticancer efficacy through a direct cytotoxic effect and an apoptosis-inducing effect through the apoptotic signaling pathways in the cytoplasm and mitochondria of the cells. As a chemotherapy strategy for treating brain glioma, functional targeting daunorubicin liposomes have the potential to eliminate brain glioma along with glioma stem cells.


Assuntos
Antineoplásicos , Neoplasias Encefálicas/metabolismo , Daunorrubicina , Glioma/metabolismo , Lipossomos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Daunorrubicina/química , Daunorrubicina/farmacocinética , Daunorrubicina/farmacologia , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neoplásicas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual
17.
Oncotarget ; 6(34): 36625-42, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26429872

RESUMO

Standard chemotherapy cannot eradicate triple-negative breast cancer (TNBC) while the residual cancer cells readily form the vasculogenic mimicry (VM) channels, which lead to the relapse of cancer after treatment. In this study, the functional vincristine plus dasatinib liposomes, modified by a targeting molecule DSPE-PEG2000-c(RGDyK), were fabricated to address this issue. The investigations were performed on TNBC MDA-MB-231 cells and MDA-MB-231 xenografts in nude mice. The liposomes exhibited the superior performances in the following aspects: the enhancement of cellular uptake via targeted action; the induction of apoptosis via activation of caspase 8, 9, and 3, increased expression of Bax, decreased expression of Mcl-1, and generation of reactive oxygen species (ROS); and the deletion of VM channels via inhibitions on the VM channel indicators, which consisted of vascular endothelial-cadherin (VE-Cad), focal adhesion kinase (FAK), phosphatidylinositide 3-kinase (PI3K), and matrix metallopeptidases (MMP-2, and MMP-9). Furthermore, the liposomes displayed the prolonged circulation time in the blood, the increased accumulation in tumor tissue, and the improved therapeutic efficacy along with deletion of VM channels in the TNBC-bearing mice. In conclusion, the nanostructured functional drug-loaded liposomes may provide a promising strategy for the treatment of invasive TNBC along with deletion of VM channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Distribuição Aleatória , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/patologia , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Biomed Nanotechnol ; 11(9): 1568-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26485927

RESUMO

Regular chemotherapy cannot eradicate invasive breast cancer cells and the residual cancer cells will form vasculogenic mimicry (VM) channels under hypoxic conditions to provide nutrients for cancer masses prior to angiogenesis. This phenomenon is a major reason for the recurrence of invasive breast cancer after treatment. In this study, a novel type of targeted liposomes was developed by modifying a mitochondria-tropic material, D-a-tocopheryl polyethylene glycol 1000 succinate- triphenylphosphine conjugate (TPGS1000-TPP), to encapsulate sunitinib and vinorelbine separately and a combination of the two targeted drug liposomes was used to treat invasive breast cancer as well as VM channels. Evaluations were performed in breast cancer MCF-7 cells and highly invasive breast cancer MDA-MB-435S cells in vitro and in mice. The results determined that the functional material (TPGS1000-TPP) and suitable size of the liposomes (90-100 nm) resulted in prolonged blood circulation, an enhanced permeability retention (EPR) effect in cancer tissue, and a mitochondrial targeting effect. Targeted drug liposomes were internalized via cellular uptake and accumulated in the mitochondria of invasive breast cancer cells or VM channel-forming cancer cells to induce acute cytotoxic injury and apoptosis. Activated apoptotic enzymes caspase 9 and caspase 3 as well as down-regulated VM channel-forming indicators (MMP-9, EphA2, VE-Cadherin, FAK and HIF-1α) contributed to significantly enhanced efficacy. Therefore, a combination of targeted sunitinib liposomes and targeted vinorelbine liposomes may provide an effective strategy for treating invasive breast cancer and prevent relapse arising from VM channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Neoplasias da Mama/tratamento farmacológico , Lipossomos/química , Nanocápsulas/química , Nanocompostos/química , Animais , Neoplasias da Mama/patologia , Difusão , Feminino , Indóis/administração & dosagem , Células MCF-7 , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Nanocompostos/administração & dosagem , Nanocompostos/ultraestrutura , Invasividade Neoplásica , Tamanho da Partícula , Pirróis/administração & dosagem , Sunitinibe , Propriedades de Superfície , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vinorelbina
19.
Oncotarget ; 6(32): 32681-700, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26418720

RESUMO

The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin ß3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Epirubicina/administração & dosagem , Glioblastoma/tratamento farmacológico , Glucosídeos/metabolismo , Nanopartículas , Peptídeos Cíclicos/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Permeabilidade Capilar , Linhagem Celular Tumoral , Química Farmacêutica , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epirubicina/análogos & derivados , Epirubicina/química , Epirubicina/metabolismo , Glioblastoma/irrigação sanguínea , Glioblastoma/metabolismo , Glioblastoma/patologia , Glucosídeos/química , Humanos , Lipossomos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica , Peptídeos Cíclicos/química , Esferoides Celulares , Fatores de Tempo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biomed Nanotechnol ; 11(8): 1339-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295137

RESUMO

Recurrence of invasive breast cancer could arise from the residual cancer cells after comprehensive treatment. It is possible that residual invasive cancer cells are capable of forming highly patterned vasculogenic mimicry (VM) channels, leading to relapse and metastasis. In the present study, a new type of targeting epirubicin plus quinacrine liposomes was developed by modifying functional DSPE-PEG2000 with C(RGDfK), a cyclic peptide containing Arg-Gly-Asp. These liposomes could potentially eliminate invasive breast cancer and destroy VM channels. Evaluations were made in human invasive breast cancer cells and their xenografts in nude mice. The results showed that the targeting epirubicin plus quinacrine liposomes could enhance the accumulation and uptake of the drugs in cancer tissues, kill cancer cells directly, activate apoptotic enzymes, destroy the VM channels and downregulate the VM channel-forming marker molecules (EphA2, FAK, PI3K, MMP 9, MMP 14, VE-Cad and HIF-α), thereby exhibiting a strong overall anticancer efficacy. The targeting epirubicin plus quinacrine liposomes provided a promising strategy to treat invasive breast cancer and to prevent the relapse arising from VM channels after chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Lipossomos/química , Peptídeos Cíclicos/farmacocinética , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Epirubicina/administração & dosagem , Epirubicina/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Invasividade Neoplásica , Tamanho da Partícula , Peptídeos Cíclicos/química , Quinacrina/administração & dosagem , Quinacrina/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...