Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964998

RESUMO

This paper proposes a novel multi-unmanned aerial vehicle (UAV) connectivity preservation controller, suitable for scenarios with bounded actuation and limited communication range. According to the hierarchical control strategy, controllers are designed separately for the position and attitude subsystems. A distributed position controller is developed, integrating an indirect coupling control mechanism. The innovative mechanism associates each UAV with a virtual proxy, facilitating connections among adjacent UAVs through these proxies. This structuring assists in managing the actuator saturation constraints effectively. The artificial potential function is utilized to preserve network connectivity and fulfill coordination among all virtual proxies. Additionally, an attitude controller designed for finite-time convergence guarantees that the attitude subsystem adheres precisely to the attitude specified by the distributed position controller. Simulation results validate the efficacy of this distributed formation controller with connectivity preservation under bounded actuation conditions. The simulation results confirm the effectiveness of the distributed connectivity preservation controller with bounded actuation.

2.
ISA Trans ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862336

RESUMO

In industrial process monitoring, it is always a challenging and practical problem to analyze the causes of the system fault by isolating true fault variables from vast amounts of process data. However, the phenomenon of smearing effect occurs by using the traditional contribution analysis-based isolation methods since the defined isolation indices of different variables affect each other. In this paper, a new fault isolation method is proposed based on local outlier factor and improved k-nearest neighbor rule aiming to improve the isolation accuracy. Firstly, the nearest neighbors of each sample are obtained along the direction of a specific variable. Based on the nearest neighbors, the outlier-degree value of the variable is calculated and regarded as the contribution of the variable. Then, the contribution of the variable in all samples are obtained in the same way, among which the maximum one is selected as the isolation threshold value of this variable. During the online monitoring, the contribution of the variable in the newly collected sample is calculated in real time. Once the contribution is greater than the threshold, the variable is judged to be the dominant factor causing the system fault. Two cases on numerical example and Tennessee Eastman process are conducted to evaluate the effectiveness of the proposed method.

3.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400411

RESUMO

In the process of silicon single-crystal preparation, the timely identification and adjustment of abnormal conditions are crucial. Failure to promptly detect and resolve issues may result in a substandard silicon crystal product quality or even crystal pulling failure. Therefore, the early identification of abnormal furnace conditions is essential for ensuring the preparation of perfect silicon single crystals. Additionally, since the thermal field is the fundamental driving force for stable crystal growth and the primary assurance of crystal quality, this paper proposes a silicon single-crystal growth temperature gradient trend classification algorithm based on multi-level feature fusion. The aim is to accurately identify temperature gradient changes during silicon crystal growth, in order to promptly react to early growth failures and ensure the stable growth of high-quality silicon single crystals to meet industrial production requirements. The algorithm first divides the temperature gradient trend into reasonable categories based on expert knowledge and qualitative analysis methods. Then, it fuses the original features of actual production data, shallow features extracted based on statistical information, and deep features extracted through deep learning. During the fusion process, the algorithm considers the impact of different features on the target variable and calculates mutual information based on the difference between information entropy and conditional entropy, ultimately using mutual information for feature weighting. Subsequently, the fused multi-level feature vectors and their corresponding trend labels are input into a Deep Belief Network (DBN) model to capture process dynamics and classify trend changes. Finally, the experimental results demonstrate that the proposed algorithm can effectively predict the changing trend of thermal field temperature gradients. The introduction of this algorithm will help improve the accuracy of fault trend prediction in silicon single-crystal preparation, thereby minimizing product quality issues and production interruptions caused by abnormal conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...