Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 46(3): 796-804, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31902446

RESUMO

Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected. Micro-ultrasound (µUS) using high-frequency (>20 MHz) ultrasound can provide a means of transmural or cross-sectional image of the GI tract. Depth of imaging is approximately 10 mm with a resolution of between 40-120 µm that is sufficient to differentiate between subsurface histologic layers of the various regions of the GI tract. Ultrasound capsule endoscopy (USCE) uses a capsule equipped with µUS transducers that are capable of imaging below the GI wall surface, offering thereby a complementary sensing technique to optical imaging capsule endoscopy. In this work, a USCE device integrated with a ∼30 MHz ultrasonic transducer was developed to capture a full 360° image of the lumen. The performance of the device was initially evaluated using a wire phantom, indicating an axial resolution of 69.0 µm and lateral resolution of 262.5 µm. Later, in vivo imaging performance was characterised in the oesophagus and small intestine of anaesthetized pigs. The reconstructed images demonstrate clear layer differentiation of the lumen wall. The tissue thicknesses measured from the B-scan images show good agreement with ex vivo images from the literature. The high-resolution ultrasound images in the in vivo porcine model achieved with this device is an encouraging preliminary step in the translation of these devices toward future clinical use.


Assuntos
Endoscopia por Cápsula/métodos , Trato Gastrointestinal/diagnóstico por imagem , Animais , Feminino , Suínos , Ultrassonografia/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-30762542

RESUMO

This study proposes a catheter consisting of dual-frequency transducer for intravascular ultrasound. Both ultrasonic elements with different frequencies were connected to one coaxial cable to make the connection simple. The aperture size of the ultrasound elements were 0.4×0.6 mm2 and 0.3×0.4 mm2 for the low frequency element and high frequency element, respectively. The center frequency and bandwidth of the fabricated low frequency transducer were 33.8 MHz and 49.3%, respectively. Meanwhile, the center frequency and bandwidth of the high frequency transducer were 80.6 MHz and 50.3%, respectively. Imaging evaluations of wire phantom, tissue phantom and vessel tissue demonstrated good imaging capability of the dual-frequency catheter. The spatial resolution are 19 µm axially and 128 µm laterally for the high frequency transducer, and 37 µm axially and 199 µm laterally for the low frequency transducer. Band-pass filters were designed to separate the mixed echo signals. After filtering, the images from different ultrasound elements can be successfully identified, indicating the feasibility of the proposed cable shared dual-frequency imaging strategy. The proposed method has simple structure, good imaging resolution, and large penetration depth, showing good application prospect for intravascular ultrasound.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29994254

RESUMO

Neuromodulation is an important method for investigating neural circuits and treating neurological and psychiatric disorders. Multiple-target neuromodulation is considered an advanced technology for the flexible optimization of modulation effects. However, traditional methods such as electrical and magnetic stimulations are not convenient for multiple-target applications due to their disadvantages of invasiveness or poor spatial resolution. Ultrasonic neuromodulation is a new noninvasive method that has gained wide attention in the field of neuroscience, and it is potentially able to support multiple-target stimulation by allocating multiple focal points in the brain using an array transducer. However, there are no reports in the literature of the efficacy of this technical concept, and an imaging tool for localizing the stimulation area for evaluating the neural effects in vivo has been lacking. In this study, we designed and fabricated a new system specifically for imaging-guided dual-target neuromodulation. The design of the array transducer and overall system is described in detail. The stimulation points were selectable on a B-mode image. In vivo experiments were carried out in mice, in which forelimbs shaking responses and electromyography outcomes were induced by changing the stimulation targets. The system could be a valuable tool for imaging-guided multiple-target stimulation in various neuroscience applications.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Elétrica Nervosa Transcutânea/métodos , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia de Intervenção/métodos , Animais , Desenho de Equipamento , Membro Anterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Crânio/fisiologia , Transdutores
4.
IEEE Trans Biomed Eng ; 65(1): 15-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368803

RESUMO

High-frequency ultrasound imaging (at >20 MHz) has gained widespread attention due to its high spatial resolution being useful for basic cardiovascular and cancer research involving small animals. The sampling rate of the analog-to-digital converter in a high-frequency ultrasound system usually needs to be higher than 120 MHz in order to satisfy the Nyquist sampling-rate requirement. However, the sampling rate is typically within the range of 40-60 MHz in a traditional ultrasound system, and so we propose a delayed-excitation method for performing high-frequency ultrasound imaging with a traditional data acquisition scheme. In this method, the transmitted pulse is delayed by a certain time period so that the ultrasound echo data are aligned into high-sampling-rate slots. Wire and tissue-mimicking phantoms were imaged to evaluate the performance of the proposed method, whereas a porcine small-intestine specimen and an excised rabbit eyeball were used for in vitro imaging evaluations. The test results demonstrate that the proposed method allows high-frequency ultrasound imaging to be implemented using a traditional ultrasound sampling system.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Animais , Olho/diagnóstico por imagem , Intestino Delgado/diagnóstico por imagem , Imagens de Fantasmas , Coelhos , Suínos
5.
IEEE Trans Med Imaging ; 36(9): 1922-1929, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28475050

RESUMO

Wireless capsule endoscopy has opened a new era by enabling remote diagnostic assessment of the gastrointestinal tract in a painless procedure. Video capsule endoscopy is currently commercially available worldwide. However, it is limited to visualization of superficial tissue. Ultrasound (US) imaging is a complementary solution as it is capable of acquiring transmural information from the tissue wall. This paper presents a mechanical scanning device incorporating a high-frequency transducer specifically as a proof of concept for US capsule endoscopy (USCE), providing information that may usefully assist future research. A rotary solenoid-coil-based motor was employed to rotate the US transducer with sectional electronic control. A set of gears was used to convert the sectional rotation to circular rotation. A single-element focused US transducer with 39-MHz center frequency was used for high-resolution US imaging, connected to an imaging platform for pulse generation and image processing. Key parameters of US imaging for USCE applications were evaluated. Wire phantom imaging and tissue phantom imaging have been conducted to evaluate the performance of the proposed method. A porcine small intestine specimen was also used for imaging evaluation in vitro. Test results demonstrate that the proposed device and rotation mechanism are able to offer good image resolution ( [Formula: see text]) of the lumen wall, and they, therefore, offer a viable basis for the fabrication of a USCE device.


Assuntos
Endoscopia por Cápsula , Animais , Desenho de Equipamento , Imagens de Fantasmas , Suínos , Transdutores , Ultrassonografia
6.
Ultrasonics ; 62: 89-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26025508

RESUMO

Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Algoritmos , Módulo de Elasticidade , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Transdutores
7.
Sensors (Basel) ; 14(8): 13348-60, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25061836

RESUMO

Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.


Assuntos
Ultrassom/instrumentação , Ultrassom/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Ondas de Choque de Alta Energia , Humanos , Microcirculação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...