Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5156-5168, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260957

RESUMO

Narrowband thermally activated delayed fluorescence (TADF) molecules have extensive applications in optoelectronics, biomedicine, and energy. The full-width at half-maximum (FWHM) holds significant importance in assessing the luminescence efficiency and color purity of TADF molecules. The goal is to achieve efficient and stable TADF emissions by regulating and optimizing the FWHM. However, a bridge from the basic physical parameters (such as geometric structure and reorganization energy) to the macroscopic properties (delayed fluorescence, efficiency, and color purity) is needed and it is highly necessary and urgent to explore the internal mechanisms that influence FWHM. Herein, first-principles calculations coupled with the thermal vibration correlation function (TVCF) theory were performed to study the energy consumption processes of the excited states for the three TADF molecules (2,3-POA, 2,3-DPA, and 2,3-CZ) with different donors; inner physical parameters affecting the FWHM were detected. By analyzing the basic geometric and electronic structures as well as the transition properties and reorganization energies, three main findings in modulating FWHM were obtained, namely a large local excitation (LE) proportion in the first singlet excited state is advantageous in reducing FWHM, a donor group with weak electron-donating ability is beneficial for achieving narrowband emission, and small reorganization energies for the ground state are favorable for reducing FWHM. Thus, wise molecular design strategies to achieve efficient narrowband TADF emission are theoretically proven and proposed. We hope that these results will promote an in-depth understanding of FWHM and accelerate the development of high color purity TADF emitters.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123684, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039645

RESUMO

Balancing the rapid radiative decay process and the fast reverse intersystem crossing (RISC) process of thermally activated delayed fluorescence (TADF) molecule remains a great challenge and efficient molecular design strategies are highly desired. Herein, from a theoretical perspective, excited state properties of three reported TADF molecules (1TICz, 1BOICz and 2BOICz) are investigated based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method. Results indicate that, by introducing the multi-resonance (MR) acceptor, 1BOICz possesses hybrid long-range and short-range charge transfer features, balanced small energy gap (ΔEST) and large oscillator strength (f) is obtained. Furthermore, by incorporating double equivalent MR acceptors in 2BOICz, largely enhanced f with slightly changed ΔEST is achieved, inner mechanism for remarkable photophysical property is illustrated. Keep this strategy, seven new TADF molecules (2pDBA-bICz-1, 2pDBA-bICz-2, 2OSBA-bICz, 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz) are theoretically designed, detailed physical parameters are analyzed and excited state energy consumption process is studied. Strong electrophilicity on acceptor is determined and the strength of nucleophilic sites on the bridge-phenyl of 2DQAO-bICz, 2QAO-bICz, 2SQAO-bICz and 2OQAO-bICz is increased, this promotes the short-range charge transfer property. In addition, the excitation processes for all studied molecules are dominated by long-range charge transfer from donor to acceptors, and supplemented by the short-range charge transfer on the bridge-phenyl with MR effect. Compromise energy gap and oscillator strength as well as large spin orbit coupling (SOC) constant are obtained for designed molecules. Thus, by regulating the long-range and short-range charge transfer ratios, excited state properties are successfully modulated and new efficient TADF molecules are proposed. Our research aims to provide deeper insight into long-range and short-range charge transfer features in balancing small ΔEST and large f, which could facilitate the development of novel efficient TADF molecules.

3.
Phys Chem Chem Phys ; 25(34): 23207-23221, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37605930

RESUMO

Stimulus-responsive organic room temperature phosphorescence (RTP) materials with long lifetimes, high efficiencies and tunable emission properties have broad applications. However, the amounts and species of efficient RTP materials are far from meeting the requirements and the inner stimulus-responsive mechanisms are unclear. Therefore, developing efficient stimulus-responsive RTP materials is highly desired and the relationship between the molecular structures and luminescent properties of RTP materials needs to be clarified. Based on this point, the influences of different substitution sites of Br on the luminescent properties of RTP molecules are studied by the combined quantum mechanics and molecular mechanics (QM/MM) coupled with thermal vibration correlation function (TVCF) theory. Moreover, the hydrostatic pressure effect on the efficiencies and lifetimes is explored and the inner mechanism is illustrated. The results show that, for the exciton conversion process, the o-substitution molecule possesses the largest spin-orbit coupling (SOC) value (〈S1|Hso|T1〉) in the intersystem crossing (ISC) process and this is conducive to the accumulation of triplet excitons. However, for the energy consumption process, the large SOC value (〈S0|Hso|T1〉) for the p-substitution molecule brings a fast non-radiative decay rate, and the small SOC value for the m-substitution molecule generates a decreased non-radiative decay rate which is helpful for realizing long lifetime emission. Keeping with this perspective, the conflict between high exciton utilization and long RTP emission needs to be balanced rather than enhancing the SOC effect by simply adding heavy atoms in RTP systems. Through regulating the molecular stacking modes by the hydrostatic pressure effect, the inner stimulus-responsive mechanism is revealed. The data of 〈S1|Hso|T1〉 in the ISC process remain almost unchanged, while 〈S0|Hso|T1〉 values and transition dipole moments are sensitive to the hydrostatic pressure. Under 1 GPa, the RTP molecule achieves a maximum efficiency (81.17%) and long lifetime (2.72 ms) with the smallest SOC and decreased non-radiative decay rate. To our knowledge, this is the first time that the hydrostatic pressure responsive mechanism for RTP molecules is revealed from a theoretical perspective, and the relationships between molecular structures and luminescent properties are detected. Our work could facilitate the development of high performance RTP molecules and expand their applications in multilevel information encryption.

4.
Phys Chem Chem Phys ; 25(15): 10977-10990, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37016944

RESUMO

In recent studies, thermally activated delayed fluorescence (TADF) molecules with a through space charge transfer (TSCT) feature have attracted wide attention. Nevertheless, studies on the substitution effects on the photophysical properties of TSCT-based TADF molecules are insufficient, and the corresponding theoretical investigations and effective molecular design strategies are highly desired. Herein, in order to reveal the inner mechanisms between the substitution effects from the donor unit and the luminescent properties for TSCT-based TADF molecules, the photophysical properties of nine TSCT-based TADF molecules (including one molecule with dual configurations) are theoretically studied. Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) coupled with the thermal vibration correlation function (TVCF) method, basic physical parameters such as geometric changes, electron-donating abilities, adiabatic singlet-triplet energy gaps, TSCT ratios, hole and electron distributions and excited state decay rates are calculated and analyzed. The relationships between molecular structures and luminescent properties are determined. Our results show that molecules with carbazole as the donor possess large oscillator strengths and transition dipole moments, and a prominent radiative decay process is determined. Moreover, molecules with phenazine as the donor present small geometric changes, strong electron-donating capability and tiny adiabatic singlet-triplet energy gap, and all these factors contribute to the effective reverse intersystem crossing process (RISC), and this feature makes these molecules promising TSCT-based TADF molecules. Furthermore, dual configurations for 2CTF molecules are determined (2CTF2.1 and 2CTF2.2), and 2CTF2.1 with a large TSCT ratio possessing a fast fluorescence decay process and high luminescence efficiency can be achieved. As for 2CTF2.2 with a small TSCT ratio, a remarkable RISC process is determined and high exciton utilization can be realized. Thus, 2CTF can be regarded as a self-doping TADF molecule and a remarkable TADF feature is detected. Our investigations provide a perspective for experimental measurements and propose an effective design strategy for efficient TSCT-based TADF molecules.

5.
Phys Chem Chem Phys ; 25(9): 6659-6673, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794480

RESUMO

Organic room temperature phosphorescence (RTP) has been widely investigated to realize long-lifetime luminescent materials and improvement in their efficiency is a key focus of research, especially for red and near-infrared (NIR) RTP molecules. However, due to the lack of systematic studies on the relationship between basic molecular structures and luminescence properties, both the species and amounts of red and NIR RTP molecules remain far from meeting the requirements of practical applications. Herein, based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, the photophysical properties of seven red and NIR RTP molecules in tetrahydrofuran (THF) and in the solid phase were theoretically studied. The excited state dynamic processes were investigated by calculating the intersystem crossing and reverse intersystem crossing rates considering the surrounding environmental effects in THF and in the solid phase using a polarizable continuum model (PCM) and quantum mechanics and molecular mechanics (QM/MM) method, respectively. The basic geometric and electronic data were obtained, Huang-Rhys factors and reorganization energies were analyzed, and natural atomic orbital was used to calculate the orbital information of the excited states. Simultaneously, the electrostatic potential distribution on molecular surfaces was analyzed. Further, intermolecular interactions were visualized using the molecular planarity binding independent gradient model based on Hirshfeld partition (IGMH). The results showed that the unique molecular configuration has the potential to achieve red and NIR RTP emission. Not only did the substitutions of halogen and sulfur make the emission wavelength red-shifted, but also linking the two cyclic imide groups could further make the emission wavelength longer. Moreover, we found that the emission characteristics of molecules in THF had a similar trend as in the solid phase. Based on this point, two new RTP molecules with long emission wavelengths (645 nm and 816 nm) are theoretically proposed and their photophysical properties are fully analyzed. Our investigation provides a wise strategy to design efficient and long-emission RTP molecules with an unconventional luminescence group.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121899, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179564

RESUMO

Recently, through space charge transfer (TSCT)-based thermally activated delayed fluorescence (TADF) molecules have shown advantages in achieving high efficiencies and tunable emissions. However, the relationships between basic molecular structures and luminescent properties are unclear. Theoretical investigations to reveal the substitution effects with different numbers and positions on excited-state properties are highly desired. Herein, by taking TSCT-based TADF molecules S-CNDF-S-tCz, S-CNDF-D-tCz and T-CNDF-T-tCz as skeletons, a series of promising TADF molecules are designed by adopting ortho, meta and para substitutions with different numbers and positions. Photophysical properties of total 16 molecules are theoretically studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods in chloroform combined with polarizable continuum model. Results indicate that molecules with ortho-substitution possess small geometric changes and short Donor-Acceptor distances which are induced by the intramolecular van der Waals interactions. Decreased non-radiative consumption and increased TSCT ratio and therefore excellent performance for them can be expected. For molecules with large substitution numbers, twist structures facilitate them to realize small adiabatic energy gaps between the lowest singlet excited state (S1) and the lowest triplet excited state (T1), this designing strategy is consistent with the TADF dendrimers. Thus, the relationships between molecular structures and luminescent properties are revealed and promising TSCT-based TADF molecules with high efficiencies are theoretically proposed. Our investigations provide theoretical perspectives for inner mechanisms of substitution effect, which could further afford meaningful guidance to design new efficient TSCT-based TADF molecules.

7.
Phys Chem Chem Phys ; 25(2): 1032-1044, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537471

RESUMO

Red and near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules show excellent potential applications in organic light-emitting diodes (OLEDs). Due to the lack of systematic studies on the relationship between molecular structures and luminescence properties, both the species and amounts of red and NIR TADF molecules are far from meeting the requirements for practical applications. Herein, four new efficient molecules (DQCN-2spAs, TPCN-2spAs, DPCN-2spAs and BPCN-2spAs) are proposed and their photophysical properties are theoretically predicted based on first-principles calculations and thermal vibration correlation function (TVCF) theory. The results show that all molecules exhibit red or NIR emissions and they have fast radiative decay rates and reverse intersystem crossing (RISC) rates, and the excellent TADF luminescence properties are predicted. Moreover, based on spiro-acridine (spAs) as the donor unit, the combination with different acceptors can change the dihedral angle between the ground state and the excited state, the bending degree of the donor is positively correlated with the reorganization energy, and this feature can have a great influence on the non-radiative process. Furthermore, based on these theoretical predictions, experimental verifications are performed and the synthesized BPCN-2spAs is confirmed to be an efficient NIR TADF molecule. Thus, the relationships between basic molecular structures and photophysical properties are revealed, a feasible design strategy is applied and four promising red and NIR TADF molecules are proposed. All these results could contribute to the development of red and NIR TADF emitters and OLEDs.

8.
Phys Chem Chem Phys ; 24(28): 17140-17154, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791916

RESUMO

Orange and red thermally activated delayed fluorescence (TADF) emitters have shown promising applications in organic light emitting diodes (OLEDs) and the bio-medical field. However, both the species and amounts of orange and red molecules are far from meeting the requirement for practical applications; this is due to the lack of systematic studies on the relationship between molecular structures and luminescence properties. Herein, the excited state dynamic processes and photophysical properties of six donor-acceptor (D-A) type orange-red TADF molecules, which possess the same acceptor, are theoretically studied in toluene by using the polarizable continuum model (PCM). Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the thermal vibration correlation function (TVCF) method, the adiabatic singlet-triplet energy gaps, natural transition orbital properties, reorganization energies, hole and electron distributions, and the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are theoretically analyzed. The results indicate that remarkable geometric changes between the lowest singlet excited state (S1) and the ground state (S0) are mainly caused by the rotation of the donor unit for NAI-R2, NAI-R3 and NAI-DPAC, and the reorganization energy is mainly contributed by the dihedral angle. However, for NAI-DMAC, BTDMAc-NAI and BFDMAc-NAI, remarkable geometric changes are found in the acceptor unit with large contribution of reorganization energy by bond length. These variations bring different non-radiative energy consumption processes. Moreover, small energy gaps between S1 and the lowest triplet excited state (T1) are determined for all studied molecules and an efficient RISC process is detected. Furthermore, enhanced conjugacy in the donor unit and remarkable intramolecular interactions are determined for BTDMAc-NAI and BFDMAc-NAI, which is helpful to promote the up-conversion process. Our investigations give reasonable explanations for previous experimental measurements and the relationship between basic structures and luminescence properties is revealed, which could facilitate the development of new efficient TADF emitters.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121328, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35537262

RESUMO

Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties have attracted great attention in recent studies. In this study, three isomeric emitters DPAC-4PYPM, DPAC-TRZ and DPAC-6PYPM with TADF are studied in toluene and crystal with the combination of polarizable continuum model (PCM) and quantum mechanics and molecular mechanics (QM/MM) method. Results show that tiny difference of intramolecular interaction is induced due to the variation in the acceptor group, thus similar geometries and stacking patterns in crystal are obtained for three molecules. Our calculation also indicates that the energy diagram is quite different for three molecules in both toluene and crystal state, while the participation of higher triplet excited states provide additional decay channels for the reverse intersystem crossing (RISC) process, which favors the generation of TADF. In addition, the bending vibrations of the phenyl in the donor and the stretching vibrations of the C=C and C-H bonds are suppressed due to the intermolecular interactions in crystal state, thus block the excited-state energy consumption pathway. It indicates that all three molecules are typical AIE systems. Our calculation results agree with experimental measurements and provide more useful information for TADF emitters with AIE properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...