Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(10): e10879, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36247121

RESUMO

Wireless sensor network (WSN) is inevitably subject to node failures due to their harsh operating environments and extra-long working hours. In order to ensure reliable and correct data collection, WSN node fault diagnosis is necessary. Fault diagnosis of sensor nodes usually requires the extraction of data features from the original collected data. However, the data features of different types of faults sometimes have similarities, making it difficult to distinguish and represent the types of faults in the diagnosis results, these indistinguishable types of faults are called ambiguous information. Therefore, a belief rule base with power set (PBRB) fault diagnosis method is proposed. In this method, the power set identification framework is used to represent the fuzzy information, the evidential reasoning (ER) method is used as the reasoning process, and the projection covariance matrix adaptive evolution strategy (P-CMA-ES) is used as the parameter optimization algorithm. The results of the case study show that PBRB method has higher accuracy and better stability compared to other commonly used fault diagnosis methods. According to the research results, PBRB can not only represent the fault types that are difficult to distinguish, but also has the advantage of small sample training. This makes the model obtain high fault diagnosis accuracy and stability.

2.
Heliyon ; 8(9): e10481, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36105453

RESUMO

With the growing security demands in the public, civil and military fields, unmanned aerial vehicle (UAV) intrusion detection has attracted increasing attention. In view of the shortcomings of the current UAV intrusion detection model using Wi-Fi data traffic in terms of detection accuracy, sample size reduction, and model interpretability, this paper proposes a new detection algorithm for UAV intrusion. This paper presents an interpretable intrusion detection model for UAVs based on the belief rule base (BRB). BRB can effectively use various types of information to establish any nonlinear relationship between the model input and output. It can model and simulate any nonlinear model and optimize the model parameters. However, the rule combination explosion problem is encountered in BRB if there are too many attributes. Therefore, an evidential reasoning (ER) algorithm is proposed for solving this problem. By combining the capabilities of the ER and the BRB methodologies, a new evaluation model, named the EBRB-based model, is proposed here for predicting UAV intrusion detection, even in the case of a massive number of attributes. The global optimization of the model is ensured. A new interpretable and globally optimized UAV intrusion detection model is proposed, which is the main contribution of this paper. An experimental case is used to demonstrate the implementation and application of the proposed UAV intrusion detection method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...