Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 37(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739856

RESUMO

CKS proteins are small (9-kDa) polypeptides that bind to a subset of the cyclin-dependent kinases. The two paralogs expressed in mammals, Cks1 and Cks2, share an overlapping function that is essential for early development. However, both proteins are frequently overexpressed in human malignancy. It has been shown that CKS protein overexpression overrides the replication stress checkpoint, promoting continued origin firing. This finding has led to the proposal that CKS protein-dependent checkpoint override allows premalignant cells to evade oncogene stress barriers, providing a causal link to oncogenesis. Here, we provide mechanistic insight into how overexpression of CKS proteins promotes override of the replication stress checkpoint. We show that CKS proteins greatly enhance the ability of Cdk2 to phosphorylate the key replication initiation protein treslin in vitro Furthermore, stimulation of treslin phosphorylation does not occur by the canonical adapter mechanism demonstrated for other substrates, as cyclin-dependent kinase (CDK) binding-defective mutants are capable of stimulating treslin phosphorylation. This effect is recapitulated in vivo, where silencing of Cks1 and Cks2 decreases treslin phosphorylation, and overexpression of wild-type or CDK binding-defective Cks2 prevents checkpoint-dependent dephosphorylation of treslin. Finally, we provide evidence that the role of CKS protein-dependent checkpoint override involves recovery from checkpoint-mediated arrest of DNA replication.


Assuntos
Quinases relacionadas a CDC2 e CDC28/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ciclo Celular/genética , Dano ao DNA/fisiologia , Humanos , Fosforilação
2.
Structure ; 20(5): 887-98, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22484091

RESUMO

Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem ß-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a ß-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
Structure ; 19(10): 1485-95, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21889351

RESUMO

Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical "boomerang" folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Complexos Endossomais de Distribuição Requeridos para Transporte/química , HIV-1/química , Fenilalanina/química , Liberação de Vírus , Clonagem Molecular , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , HIV-1/fisiologia , Humanos , Imunoprecipitação , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Relação Estrutura-Atividade , Transfecção
4.
Plant J ; 68(5): 830-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21801253

RESUMO

The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Manitol/farmacologia , Mutagênese Insercional , Quinases Relacionadas a NIMA , Pressão Osmótica , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Quinases/genética , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura , Cloreto de Sódio/farmacologia
5.
Cell Res ; 19(11): 1291-304, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19581938

RESUMO

MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transformants have more nuclei and higher aneuploid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role for AtMYB59 in cell cycle regulation and plant root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Divisão Celular/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Regulação da Expressão Gênica de Plantas , Cebolas/genética , Especificidade de Órgãos , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Leveduras/citologia , Leveduras/crescimento & desenvolvimento
6.
Plant Physiol ; 143(2): 707-19, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17189334

RESUMO

Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTHK1-transgenic Arabidopsis (Arabidopsis thaliana) plants as judged from the phenotypic change, the relative electrolyte leakage, and the relative root growth under salt stress. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid suppressed the salt-sensitive phenotype. Analysis of Arabidopsis ethylene receptor gain-of-function mutants further suggests that receptor function may lead to salt-sensitive responses. Mutation of EIN2, a central component in ethylene signaling, also results in salt sensitivity, suggesting that EIN2-mediated signaling is beneficial for plant salt tolerance. Overexpression of the NTHK1 gene or the receptor gain-of-function activated expression of salt-responsive genes AtERF4 and Cor6.6. In addition, the transgene NTHK1 mRNA was accumulated under salt stress, suggesting a posttranscriptional regulatory mechanism. These findings imply that ethylene signaling may be required for plant salt tolerance.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Cloreto de Sódio/farmacologia , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Eletrólitos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais , Nicotiana
7.
Plant J ; 44(6): 903-16, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16359384

RESUMO

An NAC-type transcription factor gene AtNAC2 was identified from Arabidopsis thaliana when expression patterns of the genes from a microarray analysis were examined. The AtNAC2 expression was induced by salt stress and this induction was reduced in magnitude in the transgenic Arabidopsis plants overexpressing tobacco ethylene receptor gene NTHK1. AtNAC2 is localized in the nucleus and has transcriptional activation activity. It can form a homodimer in yeast. AtNAC2 was highly expressed in roots and flowers, but less expressed in other organs examined. In addition to the salt induction, the AtNAC2 can also be induced by abscisic acid (ABA), ACC and NAA. The salt induction was enhanced in the ethylene overproducer mutant eto1-1, but suppressed in the ethylene-insensitive mutants etr1-1 and ein2-1, and in the auxin-insensitive mutant tir1-1when compared with that in wild-type plants. However, the salt induction of AtNAC2 was not significantly affected in the ABA-insensitive mutants abi2-1, abi3-1 and abi4-1. These results indicate that the salt response of AtNAC2 requires ethylene signaling and auxin signaling pathways but does not require ABI2, ABI3 and ABI4, intermediates of the ABA signaling pathway. Overexpression of AtNAC2 in transgenic Arabidopsis plants resulted in promotion of lateral root development. AtNAC2 also promoted or inhibited downstream gene expressions. These results indicate that AtNAC2 may be a transcription factor incorporating the environmental and endogenous stimuli into the process of plant lateral root development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/fisiologia , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dimerização , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Cebolas/citologia , Cebolas/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 132(3): 1186-95, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857801

RESUMO

The involvement of calcium and calcium-activated calmodulin (Ca(2+)-CaM) in heat shock (HS) signal transduction in wheat (Triticum aestivum) was investigated. Using Fluo-3/acetoxymethyl esters and laser scanning confocal microscopy, it was found that the increase of intracellular free calcium ion concentration started within 1 min after a 37 degrees C HS. The levels of CaM mRNA and protein increased during HS at 37 degrees C in the presence of Ca(2+). The expression of hsp26 and hsp70 genes was up-regulated by the addition of CaCl(2) and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl(3) and verapamil, or the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine. Treatment with Ca(2+) also increased, and with EGTA, verapamil, chlorpromazine, or trifluoperazine decreased, synthesis of HS proteins. The temporal expression of the CaM1-2 gene and the hsp26 and hsp70 genes demonstrated that up-regulation of the CaM1-2 gene occurred at 10 min after HS at 37 degrees C, whereas that of hsp26 and hsp70 appeared at 20 min after HS. A 5-min HS induced expression of hsp26 after a period of recovery at 22 degrees C after HS at 37 degrees C. Taken together, these results indicate that Ca(2+)-CaM is directly involved in the HS signal transduction pathway. A working hypothesis about the relationship between upstream and downstream of HS signal transduction is presented.


Assuntos
Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/fisiologia , Transdução de Sinais , Triticum/fisiologia , Cálcio/metabolismo , Cálcio/farmacologia , Calmodulina/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...