Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1388532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988981

RESUMO

The Arctic fox (Vulpes lagopus) is a species indigenous to the Arctic and has developed unique lipid metabolism, but the mechanisms remain unclear. Here, the significantly increased body weight of Arctic foxes was consistent with the significantly increased serum very-low-density lipoprotein (VLDL), and the 40% crude fat diet further increased the Arctic fox body weight. The enhanced body weight gain stems primarily from increased subcutaneous adipose tissue accumulation. The adipose triacylglycerol and phosphatidylethanolamine were significantly greater in Arctic foxes. The adipose fatty-acid synthase content was significantly lower in Arctic foxes, highlighting the main role of exogenous fatty-acids in fat accumulation. Considering the same diet, liver-derived fat dominates adipose expansion in Arctic foxes. Liver transcriptome analysis revealed greater fat and VLDL synthesis in Arctic foxes, consistent with the greater VLDL. Glucose homeostasis wasn't impacted in Arctic foxes. And the free fatty-acids in adipose, which promote insulin resistance, also did not differ between groups. However, the hepatic glycogen was greater in Arctic foxes and transcriptome analysis revealed upregulated glycogen synthesis, improving glucose homeostasis. These results suggest that the superior fat accumulation capacity and distinct characteristics of hepatic and adipose lipid and glucose metabolism facilitate glucose homeostasis and massive fat accumulation in Arctic foxes.

2.
Comput Struct Biotechnol J ; 23: 1608-1618, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38680874

RESUMO

Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.

3.
Animals (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338075

RESUMO

The gut microbiota establishment in young ruminants has a profound impact on their adult production performance. However, the critical phase for the succession of the gut microbial composition and metabolic profiles of juvenile sika deer still needs to be further investigated. Here, we analyzed the fecal microbiota and metabolites of juvenile sika deer during the birth (D1), transition (D42), and rumination (D70) periods based on 16S rRNA sequencing and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). The results showed that the fecal bacteria and metabolites composition were significantly different in D1 compared to D42 and D70, and the number of OTUs and the Shannon index were significantly higher in D70 than in D1 (p < 0.05). The relative abundances of Lactobacillus, Lactococcus, and Lachnoclostridium showed a significant increase in D1 compared to D42 and D70, whereas the relative abundances of Ruminococcaceae UCG-005, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Christensenellaceae R-7, and Eubacterium coprostanoligenes group were significantly decreased in D1 compared to D42 and D70 (p < 0.05). The amounts of serine, phenylalanine, aspartic acid, ornithine, citrulline, creatine, isoleucine, galactose, and ribose in the feces were significantly higher in D1 compared to D42 and D70. In contrast, the concentrations of cortexolone, resveratrol, piceatannol, fumaric acid, alpha-ketoglutarate, glycerol, uracil-5-carboxylic acid, and maleic acid were significantly decreased in D1. The enrichment analysis showed that amino acid metabolism and carbohydrate metabolism were significantly changed in D1 compared to D42 and D70. The glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism; citrate cycle; and pyruvate metabolism were significantly enriched across the three periods (p < 0.05). In conclusion, our results suggested that the birth-transition period is a critical phase for the gut bacterial community and metabolic function shift in juvenile sika deer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...