Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Oncol ; 2022: 7379157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898928

RESUMO

Objective: To investigate the expression of glutathione peroxidase 2 (GPX2) in human lung adenocarcinoma tissues and its effect on the biological function of lung adenocarcinoma A549 cells. Methods: The expression of GPX2 in lung adenocarcinoma and its effect on survival were analyzed by the TCGA database and the GEPIA 2 database. A total of 45 cases of primary lung adenocarcinoma tissue specimens and 45 cases of their paracancerous tissue specimens were collected, and the expression of GPX2 in the two types of tissues was detected by immunohistochemistry. Lung adenocarcinoma A549 cells were divided into the GPX2 overexpression group (GPX2), the GPX2 knockdown group (si-GPX2), the empty vector group (Vector), the siRNA negative control group (si-NC), and the WT group; the mRNA level and protein expression of GPX2 in each group of A549 cells were detected by real-time fluorescence quantitative PCR and Western blotting; the proliferation activity of each group of cells was detected by the CCK-8 assay; the effect of GPX2 on cell migration and invasion ability was detected by the scratch assay and the Transwell invasion assay; the apoptosis of each group of cells was detected by flow cytometry; Western blotting was performed to detect the expression levels of Bax, Bcl-2, E-cadherin, vimentin, and MMP2 and MMP9 proteins in each group of cells. Results: Bioinformatics analysis showed that the expression of GPX2 was strongly correlated with the prognosis of lung adenocarcinoma patients (P < 0.01). The positive expression rates of GPX2 in lung adenocarcinoma and its paracancerous tissues were 66.0% and 15.7%, respectively (P < 0.05). The results of RT-qPCR and Western blotting showed that the expression level of GPX2 mRNA and protein in A549 cells in the GPX2 group increased, which was significantly higher than that in the WT group (P < 0.05); the expression levels of GPX2 mRNA and protein in A549 cells in the si-GPX2 group were the same, that is, significantly lower than the WT group (P < 0.05). GPX2 overexpression promoted the proliferation, migration, and invasion of A549 cells and inhibited their apoptosis; the results in the si-GPX2 group were opposite to those in the GPX2 group. Compared with the WT group, the expression of Bcl-2, vimentin, and MMP2 and MMP9 protein in the GPX2 group increased (P < 0.05), while the expression of Bax and E-cadherin protein decreased in the GPX2 group (P < 0.05); the results in the si-GPX2 group were opposite to those in the GPX2 group. Conclusion: The expression of GPX2 in lung adenocarcinoma is related to the prognosis of patients. It is proved that GPX2 can promote the migration and invasion of lung adenocarcinoma cells and is related to the EMT/ß-catenin pathway. Thus, GPX2 is expected to be an important target for the diagnosis and treatment of lung adenocarcinoma.

2.
Oncol Lett ; 12(5): 3896-3904, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27895746

RESUMO

Vascular endothelial cell growth factor (VEGF)-C promotes tumorigenesis by allowing lymph node metastasis and lymphangiogenesis, among other actions. RNA interference (RNAi) is a novel technique for suppressing target gene expression and may increase the effectiveness of cancer treatments. The present study assessed the influence of VEGF-C RNAi on the apoptosis and proliferation of mouse breast cancer cells in vitro and in vivo. A total of three pairs of small interfering RNA (siRNA) targeting mouse VEGF-C were designed and synthesized prior to transfection into 4T1 cells via a liposomal approach. Reverse transcription polymerase chain reaction, western blot analysis, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst 33258 staining and flow cytometry were performed in vitro to analyze VEGF-C expression, cleaved caspase-3 protein expression and 4T1 cell proliferation and apoptosis. Experiments were also conducted in vivo on BALB/c mice with breast cancer. Tumor weight and volume were measured and the number of apoptotic cells in tumor tissues was assessed by a TUNEL assay. Immunohistochemical assays and an enzyme-linked immunosorbent assay were used to measure the expression of VEGF-C in tumor tissues. The results demonstrated that the three pairs of siRNA, particularly siV2, significantly reduced VEGF-C mRNA and protein levels in 4T1 cells. siV2 was deemed to be the most efficient siRNA and therefore was selected to be used in subsequent experiments. Furthermore, in vitro studies indicated that VEGF-C RNAi significantly decreased cell growth, induced apoptosis and upregulated the expression of cleaved caspase-3 protein. Tumor weight and volume in breast cancer in vivo models was reduced by the intratumoral injection of siV2. Antitumor efficacy was associated with decreased VEGF-C expression and increased induction of apoptosis. The present study therefore indicated that VEGF-C RNAi inhibited mouse breast cancer growth in vitro and in vivo and that it may be a novel targeted therapy for breast cancer.

3.
Chin Med J (Engl) ; 120(23): 2138-42, 2007 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18167190

RESUMO

OBJECTIVE: To review the research progress on Type IV secretion system (T4SS) in Helicobacter pylori. DATA SOURCES: The data used in this review were identified by searching of PUBMED (1995 - 2007) online resources using the key terms 'Type IV secretion system' and 'Helicobacter pylori'. STUDY SELECTION: Mainly original articles and critical reviews written by major pioneer investigators of this field were selected. RESULTS: The research progress on T4SS in Helicobacter pylori was summarized. The structure and function was discussed. CONCLUSIONS: T4SS is not only involved in toxin secretion and injection of virulence factors into eukaryotic host target cells, but also involved in horizontal DNA transfer to other bacteria and eukaryotic cells, through DNA uptake from or release into the extracellular milieu. It provides a new insight into the pathogenicity of Helicobacter pylori and a novel target for antimicrobials development. However, many challenges remain for us in understanding the biological role of T4SS in Helicobacter pylori.


Assuntos
Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Transferência Genética Horizontal , Helicobacter pylori/genética , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...