Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 133: 693-701, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022486

RESUMO

In this study, a facile marine bioinspired surface modification approach for carboxyl-functionalized multiwalled carbon nanotube (CCNT) and enhanced interfacial adhesion with the konjac glucomannan (KGM) matrix were illustrated to develop aerogels. Combined with FT-IR, XRD, Raman, TGA, XPS and SEM results, it was indicated that functionalized CCNT (PCCNT) is a reinforcer through hydrogen bond interactions in the aerogel formation process, which could be the main reason for the enhancement. The swelling and vitro release behavior of KGM/PCCNT aerogels were studied under two conditions using the drug 5-fluorouracil (5-FU). The release amount of 5-FU incorporated into KGM/PCCNT4 aerogel was about 48% at pH 1.2 and 62% at pH 6.8 after11 h, respectively. The results showed that the release rate of 5-FU from the KGM/PCCNT4 aerogel using PCCNT could be effectively controlled, suggesting potential applications for it as a drug carrier in targeted delivery in the biomedical filed.


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/química , Mananas/química , Nanotubos de Carbono/química , Preparações de Ação Retardada , Géis , Fenômenos Mecânicos , Temperatura
2.
Carbohydr Polym ; 190: 196-203, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628238

RESUMO

Pure agarose (AG) hydrogels have strong rigidity and brittleness, which greatly limit their applications. Therefore, in this study, konjac glucomannan (KGM) was used to improve the properties of AG hydrogels. The effect of KGM on the structure and properties of AG hydrogels was investigated by rotational rheometry, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy. The results showed that the flexibility of the composite hydrogels increases with KGM concentration, which may be attributed to a synergistic interaction between KGM and AG resulting in a compact network structure. In vitro drug release behavior of composite hydrogels was investigated under different environments using model drug ciprofloxacin. The results showed that the encapsulation, drug loading efficiencies, and sustained release capacity of AG hydrogels were enhanced by the incorporation of KGM. These results suggested that KGM has the potential to enhance the properties and drug release characteristics of AG hydrogels.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hidrogéis/química , Mananas/química , Sefarose/química , Ciprofloxacina/química , Temperatura
3.
Int J Biol Macromol ; 113: 285-293, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452182

RESUMO

Intelligent hydrogels are attractive biomaterials for various applications, however, fabricating a hydrogel with both adequate self-healing ability and mechanical properties remains a challenge. Herein, a series of novel intelligent konjac glucomannan (KGM)/microcrystalline cellulose (MCC) hydrogels were prepared vis the mussel-inspired chemistry. MCC was firstly functionalized by the oxidative polymerization of dopamine, and the intelligent hydrogels were obtained by mixing aqueous solutions of KGM and functionalized MCC (PDMCC). By introducing PDMCC, a more compact interconnected porous structure formed for the resulting hydrogels. The self-healing ability and mechanical properties of intelligent hydrogels were dependence on the PDMCC content. Compared with KGM hydrogels, KGM/PDMCC hydrogels exhibited a more distinct pH sensitivity and a lower initial burst release, which was attributed to the compact structure and strong intermolecular hydrogen bond interaction between PDMCC and KGM. These results suggest that the KGM/PDMCC intelligent hydrogels may be promising carriers for controlled drug delivery.


Assuntos
Materiais Biomiméticos/química , Bivalves , Celulose/química , Portadores de Fármacos/química , Hidrogéis/química , Mananas/química , Animais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Temperatura
4.
RSC Adv ; 8(47): 26432-26439, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35541034

RESUMO

The exploration of methods to produce a novel wound dressing with sustained drug release properties in ultrasmall scales is of great scientific and technological interest. Herein, we propose konjac glucomannan/polyvinylidene fluoride (KGM/PVDF) hybrid microfibers having hydrophilic and hydrophobic segments based on microfluidic-oriented core-sheath composite microfibers, where the KGM/PVDF hybrid microfibers are wrapped in situ in CH3OH. The morphology of KGM/PVDF microfibers is uniform, smooth, and crack-free. Enrofloxacin (Enro) is loaded onto the microfibers as a representative cargo to test their release performance. The KGM/PVDF/Enro microfibers show sustained drug release performance (13 days), excellent heat resistance, antibacterial activity and promotion of wound healing. This study is an avenue toward the microfluidic design of hydrophilic/hydrophobic hybrid microfibers as wound dressings, and it will guide the development of next-generation wound dressing.

5.
Int J Mol Sci ; 18(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258196

RESUMO

Three-dimensional nanofibers cryogels (NFCs) with both thermally-tolerant and mechanically-robust properties have potential for wide application in biomedical or food areas; however, creating such NFCs has proven to be extremely challenging. In this study, konjac glucomannan (KGM)/poly (lactic acid) (PLA)-based novel NFCs were prepared by the incorporation of the mussel-inspired protein polydopamine (PDA) via a facile and environmentally-friendly electrospinning and freeze-shaping technique. The obtained KGM/PLA/PDA (KPP) NFCs were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and compressive and tensile test. The results showed that the hierarchical cellular structure and physicochemical properties of KPP NFCs were dependent on the incorporation of PDA content. Moreover, the strong intermolecular hydrogen bond interactions among KGM, PLA and PDA also gave KPP NFCs high thermostability and mechanically-robust properties. Thus, this study developed a simple approach to fabricate multifunctional NFCs with significant potential for biomedical or food application.


Assuntos
Bivalves , Criogéis/química , Mananas/química , Poliésteres/química , Animais , Ligação de Hidrogênio , Indóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...