Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(8): 932, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432491

RESUMO

Afforestation can improve soil erosion in the ecologically fragile areas of the Loess Plateau; however, the amount of water and phosphorus fertilizer that can promote vegetation survival is unclear, which hinders the improvement of the local ecological environment and the waste of water and fertilizer. In this study, based on field surveys, water and fertilizer control tests on Robinia pseudoacacia L. seedlings in experimental fields, and fitting CO2 response curves to R. pseudoacacia seedlings using a Li-6400 portable photosynthesizer, we measured their leaf nutrient contents and calculated resource use efficiency. The results showed that (1) under the same moisture gradient, except for photosynthetic phosphorus utilization efficiency (PPUE), light use efficiency (LUE), water use efficiency (WUE), carbon utilization efficiency (CUE), and photosynthetic nitrogen use efficiency (PNUE) all increased with increasing phosphorus fertilizer application. Under the same phosphorus fertilizer gradient, WUE increased with decreasing water application, and LUE, CUE, PNUE, and PPUE all reached the maximum at 55-60% of field water holding capacity. (2) Net photosynthetic rate (Pn) of R. pseudoacacia seedlings increased with increasing intercellular carbon dioxide concentration (Ci), and as Ci continued to increase, the increase in Pn became slower, but no maximal electron transport rate (TPU) occurred. Under the same CO2 concentration, Pn reached a maximum at 55-60% of field water holding capacity and phosphorus fertilizer at 30 gPm-2·a-1. (3) Leaf maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), daily respiration (Rd), stomatal conductance (Gs), and mesophyll conductance (Gm) reached their maximum at 30 gPm-2·a-1 of phosphorus fertilizer. Vcmax, Jmax, and Rd reached their maximum at 55-60% of field water holding capacity; Gs and Gm reached their maximum at 75-80% of field water holding capacity. (4) The higher the soil phosphorus content, the lower the biochemical (lb), stomatal (ls), and mesophyll (lm). With the increase of soil moisture, lb and ls are higher, and lm is lower. (5) Structural equation modeling showed that water-phosphorus coupling had a less direct effect on Rd and a more direct impact on Gs and Gm. Relative photosynthetic limitation directly affected the photosynthetic rate, indicating that water and phosphorus affected the photosynthetic rate through relative plant limitation. It was concluded that the resource use efficiency and photosynthetic capacity reached the maximum when 55-60% of field water holding capacity was maintained, and phosphorus fertilization was at 30 gP m-2·a-1. Therefore, maintaining suitable soil moisture and phosphorus fertilizer levels in the semi-arid zone of the Loess Plateau can improve the photosynthetic capacity of R. pseudoacacia seedlings.


Assuntos
Robinia , Solo , Plântula , Dióxido de Carbono , Fertilizantes , Monitoramento Ambiental , China , Nitrogênio , Fósforo
2.
Mol Breed ; 43(4): 31, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37313527

RESUMO

The shade avoidance syndrome (SAS) in soybean can have destructive effects on yield, as essential carbon resources reserved for yield are diverted to the petiole and stem for exaggerated elongation, resulting in lodging and susceptibility to disease. Despite numerous attempts to reduce the unfavorable impacts of SAS for the development of cultivars suitable for high-density planting or intercropping, the genetic bases and fundamental mechanisms of SAS remain largely unclear. The extensive research conducted in the model plant Arabidopsis provides a framework for understanding the SAS in soybean. Nevertheless, recent investigations suggest that the knowledge obtained from model Arabidopsis may not be applicable to all processes in soybean. Consequently, further efforts are required to identify the genetic regulators of SAS in soybean for molecular breeding of high-yield cultivars suitable for density farming. In this review, we present an overview of the recent developments in SAS studies in soybean and suggest an ideal planting architecture for shade-tolerant soybean intended for high-yield breeding.

3.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1291-1299, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730088

RESUMO

Relationship between plant community functional diversity and ecosystem multifunctionality (EMF) was a new area of ecological research in recent years. Previous studies had mostly focused on the relationship between plant community functional diversity and individual ecosystem function, and lack of understanding of the EMF. In this study, six functional indices of aboveground biomass, soil organic carbon, soil total nitrogen, soil total phosphorus, soil available nitrogen and soil available phosphorus of Gannan alpine meadow were selected to analyze the relationship between plant community functional diversity and EMF on the altitude gradient of Gannan alpine mea-dow by using Bartlett sphericity test and multi-threshold method. The results showed that there was significant altitudinal difference in plant community composition, with species richness and plant coverage at 3500 m were significantly higher than those at other altitudes. Single and multi-functional diversity decreased with the increases of altitude, with significant difference among altitudes. Redundancy analysis showed that single and multi-functional richness, functional evenness and Rao's quadratic entropy were significantly positively correlated with soil temperature, soil water content and soil bulk density, and significantly negatively correlated with soil pH and soil conductivity. In a large threshold range (6%-89%), functional diversity had a significant positive effect on EMF. Based on correlation analysis, optimal regression model and random forest model, it was found that multi-functional richness index had a significant positive relationship with EMF, and that multi-functional richness was also the main driving factor of EMF. Overall, functional richness had the most significant impact on the EMF of alpine meadow in the Qinghai-Tibet Plateau.


Assuntos
Altitude , Ecossistema , Carbono , China , Pradaria , Nitrogênio/análise , Fósforo , Plantas , Solo/química , Tibet
4.
Front Plant Sci ; 13: 803122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185980

RESUMO

Blue-light inhibitors of cryptochromes (BICs) promote hypocotyl elongation by suppressing the activity of cryptochromes in Arabidopsis. Nevertheless, the roles of BICs in other plant species are still unclear. Here we investigate their functions by genetic overexpression and CRISPR/Cas9 engineered mutations targeting the six GmBIC genes in soybean. We showed that the GmBICs overexpression (GmBICs-OX) lines strongly promoted stem elongation, while the single, double, and quadruple mutations in the GmBIC genes resulted in incremental dwarfing phenotypes. Furthermore, overexpression of GmBIC2a abolished the low blue light (LBL)-induced stem elongation, demonstrating the involvement of GmBICs in regulating cryptochrome-mediated LBL-induced shade avoidance syndrome (SAS). The Gmbic1a1b2a2b quadruple mutant displayed reduced stem elongation under LBL conditions, which was reminiscent of the GmCRY1b-OX lines. Taken together, this study provided essential genetic resources for elucidating GmBICs functional mechanisms and breeding of shade-tolerant soybean cultivars in future.

5.
Huan Jing Ke Xue ; 42(6): 2634-2647, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032063

RESUMO

Air quality has gradually improved in many parts of China; however, air pollution is become more severe in the Fenwei Plain. Using OMI/Aura OMAERUV L2 and PM2.5 data, spatial autocorrelation analysis and back trajectory modeling were used to explore the spatio-temporal patterns of absorptive aerosols over the Fenwei Plain, and the dominant types, transmission paths, and potential source areas were identified. The main results can be summarized as follows:① Annual mean absorbing aerosol index (AAI) values increased between 2005 and 2019, with high period occurring in 2006, 2013, and 2017, with values exceeding 0.63. Xi'an and Linfen were identified as a 'high-high' cluster, with AAI showing poor spatial stability and a 15.3% increase in area over the past 15 years. In contrast, the area connecting Xi'an and Linfen, which occupies 24.2% of the total area of the region, was identified as a 'low-low' cluster, with a sharp drop of 6.2% in area; ② The Fenwei Plain has high AAI values across a large area in winter, exceeding 0.8 in Linfen and Xi'an, and 91.5% of the study area exceeding 0.6. Values were lower in spring (AAI>0.4) and autumn (AAI>0.3), with the lowest values occurring in summer. The atmospheric diffusion conditions in spring, autumn, and winter are poor, associated with anticyclonic high-pressure events. The observed high AAI values were significantly affected by atmospheric diffusion conditions, temperature, and precipitation; ③ Back trajectory and source contribution modeling showed that long-range transport of air masses from Xi'an and Linfen occurs from the northwest, and short-range transport air masses occurs from the east and south. Two long-range sand and dust source areas were determined (with northwestern and northern wind sources); two carbon source areas were identified (with eastern and southern wind sources); and one combined sand and carbon source area was identified (from the Loess Plateau). Of these sources, the northwestern wind source, the Loess Plateau, and the southern wind source have significant influence in Xi'an, and the eastern wind source and the Loess Plateau have a significant impact on Linfen. Linfen is little affected by the northwestern wind source and the dust from the northern wind source. Based on the spatial distribution of CO and its correlation with AAI, it is concluded that cardon in the dominant absorbent aerosol in Linfen dust and carbon are most important in Xi'an.

6.
Mol Plant ; 14(2): 298-314, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249237

RESUMO

Soybean is an important legume crop that displays the classic shade avoidance syndrome (SAS), including exaggerated stem elongation, which leads to lodging and yield reduction under density farming conditions. Here, we compared the effects of two shade signals, low red light to far-red light ratio (R:FR) and low blue light (LBL), on soybean status and revealed that LBL predominantly induces excessive stem elongation. We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes (GmCRYs) in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS. Light-activated GmCRY1s increase the abundance of the bZIP transcription factors STF1 and STF2, which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation. Notably, GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions. Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean. It also provides a promising option for breeding lodging-resistant, high-yield soybean cultivars in the future.


Assuntos
Giberelinas/metabolismo , Glycine max/metabolismo , Glycine max/fisiologia , Luz , Proteínas de Plantas/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Glycine max/anatomia & histologia , Glycine max/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...