Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1257985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023171

RESUMO

Epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that converts epithelial cells into mesenchymal-like cells with migratory and invasive capabilities. The initiation and regulation of EMT is closely linked to a range of transcription factors, cell adhesion molecules and signaling pathways, which play a key role in cancer metastasis and drug resistance. The regulation of ferroptosis is intricately linked to various cell death pathways, intracellular iron homeostasis, and the protein network governing iron supply and storage. The ability of ferroptosis to disrupt cancer cells and overcome drug resistance lies in its control of intracellular iron ion levels. EMT process can promote the accumulation of iron ions, providing conditions for ferroptosis. Conversely, ferroptosis may impact the regulatory network of EMT by modulating transcription factors, signaling pathways, and cell adhesion molecules. Thus, ferroptosis related genes and signaling pathways and oxidative homeostasis play important roles in the regulation of EMT. In this paper, we review the role of ferroptosis related genes and their signaling pathways in regulating cancer EMT to better understand the crosstalk mechanism between ferroptosis and EMT, aiming to provide better therapeutic strategies for eradicating cancer cells and overcoming drug resistance.

2.
Crit Rev Biotechnol ; : 1-19, 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37574211

RESUMO

Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.

3.
Plants (Basel) ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176916

RESUMO

Legume medicinal plants Astragalus membranaceus are widely used in the world and have very important economic value, ecological value, medicinal value, and ornamental value. The bioengineering technology of medicinal plants is used in the protection of endangered species, the rapid propagation of important resources, detoxification, and the improvement of degraded germplasm. Using bioengineering technology can effectively increase the content of secondary metabolites in A. membranaceus and improve the probability of solving the problem of medicinal plant resource shortage. In this review, we focused on biotechnological research into A. membranaceus, such as the latest advances in tissue culture, including callus, adventitious roots, hairy roots, suspension cells, etc., the metabolic regulation of chemical compounds in A. membranaceus, and the research progress on the synthetic biology of astragalosides, including the biosynthesis pathway of astragalosides, microbial transformation of astragalosides, and metabolic engineering of astragalosides. The review also looks forward to the new development trend of medicinal plant biotechnology, hoping to provide a broader development prospect for the in-depth study of medicinal plants.

4.
Plants (Basel) ; 12(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050131

RESUMO

At present, most precious compounds are still obtained by plant cultivation such as ginsenosides, glycyrrhizic acid, and paclitaxel, which cannot be easily obtained by artificial synthesis. Plant tissue culture technology is the most commonly used biotechnology tool, which can be used for a variety of studies such as the production of natural compounds, functional gene research, plant micropropagation, plant breeding, and crop improvement. Tissue culture material is a basic and important part of this issue. The formation of different plant tissues and natural products is affected by growth conditions and endogenous substances. The accumulation of secondary metabolites are affected by plant tissue type, culture method, and environmental stress. Multi-domain technologies are developing rapidly, and they have made outstanding contributions to the application of plant tissue culture. The modes of action have their own characteristics, covering the whole process of plant tissue from the induction, culture, and production of natural secondary metabolites. This paper reviews the induction mechanism of different plant tissues and the application of multi-domain technologies such as artificial intelligence, biosensors, bioreactors, multi-omics monitoring, and nanomaterials in plant tissue culture and the production of secondary metabolites. This will help to improve the tissue culture technology of medicinal plants and increase the availability and the yield of natural metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...