Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1259858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818321

RESUMO

Introduction: Dryland ecosystems face serious threats from climate change. Establishing the spatial pattern of ecosystem multifunctionality, maximum height and the correlation of biodiversity patterns with climate change is important for understanding changes in complex ecosystem processes. However, the understanding of their relationships across large spatial areas remains limited in drylands. Methods: Accordingly, this study examined the spatial patterns of ecosystem multifunctionality, maximum height and considered a set of potential environmental drivers by investigating natural shrub communities in Northwest China. Results: We found that the ecosystem multifunctionality (EMF) and maximum height of shrub communities were both affected by longitude, which was positively correlated with the precipitation gradient. Specifically, the EMF was driven by high precipitation seasonality, and the maximum height was driven by high precipitation stability during the growing season. Among the multiple biodiversity predictors, species beta diversity (SD-beta) is the most common in determining EMF, although this relationship is weak. Discussion: Unlike tree life form, we did not observe biodiversity-maximum height relationships in shrub communities. Based on these results, we suggest that more attention should be paid to the climatical fluctuations mediated biodiversity mechanisms, which are tightly correlated with ecosystem's service capacity and resistance capacity under a rapid climate change scenario in the future.

2.
Front Plant Sci ; 12: 754887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858458

RESUMO

The allometric relationship among different functional traits is an ecological strategy for plants to promote resource utilization, which indicates the ability of plants to adapt to environmental changes coordinately. In this study, we conducted a field survey on Haloxylon ammodendron and H. persicum among different terrains (dune crest, eastern slope, western slope and inter-dune) in the Gurbantunggut Desert, obtained their quantitative and morphological characteristics, and analyzed their allometric relationships between plant height and canopy radius, plant height and basal diameter by using standardized major axis estimation. We found that: (1) The dominated terrains of H. ammodendron and H. persicum were different; (2) The individual morphology of the two Haloxylon species changed significantly with the terrains (p < 0.05), with the largest and smallest ones growing on the eastern slope and the inter-dune lowland, respectively; (3) Fixed allometric patterns were observed in the above-ground parts of the two Haloxylon species, as the growth of canopy and basal stem was preferentially to plant height; (4) These allometric relationships were significantly affected by the terrain, and exhibited discrepancy between two species, they both invested less in plant height in windy habitats, such as the dune crest and western slope, but H. ammodendron growing on the western slope and H. persicum growing on the eastern slope invested more in basal diameter for strengthening mechanical support and resources acquisition, respectively. These results indicated that both studied species adopted an ecological strategy that allocating more resources to horizontal expansion rather than vertical growth, the terrain has an important influence on the allometric relationship of their above-ground parts, and the trade-off mechanism of main components investing was different for these two species due to habitat heterogeneity and ecological adaptability.

3.
Front Plant Sci ; 12: 625475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633767

RESUMO

The changing availability of water resources and frequent extreme drought events in the context of global change will have a profound impact on desert vegetation, especially on herbaceous populations such as ephemerals. Erodium oxyrrhynchum is the dominant species in the Gurbantunggut Desert. It can germinate both in spring and autumn, which is important for herbaceous layer coverage and productivity. Therefore, we tracked and recorded the survival and reproduction of the E. oxyrrhynchum population under different precipitation treatments and established a population matrix model, monitored the allometry and leaf traits of the plants, and compared the performance of spring-germinating and autumn-germinating plants. Our results showed that: (1) The population dynamics were significantly affected by precipitation changes; (2) drought reduced the survival rate of the plants and accelerated the completion of their life history; (3) precipitation had a significant effect on seed production and growth rate, but not on plant height and allometry; (4) biomass, leaf area, specific leaf area, and 100-grain weight of E. oxyrrhynchum also responded to changes in precipitation; and (5) autumn-germinated plants had higher productivity, whereas spring-germinated plants exhibited higher reproductive efficiency, indicating that they had difference life history strategies. In conclusion, our results suggested that, although frequent or prolonged drought can significantly inhibit population growth, species with biseasonal germination are likely to be less affected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...