Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(5): 104298, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602943

RESUMO

Early steps in the endoplasmic reticulum (ER) lumen and cis-Golgi comprise trimming of N-glycans by class I α-mannosidases (MNSs) play crucial roles in root growth and stress response. Herein, we found that the root growth inhibition in the mns1 mns2 mns3 mutant was partially rescued under alkaline condition, and inhibitor treatment to disrupt auxin transport counteracted this alkaline-maintained root growth. Further study showed that indole-3-acetic acid (IAA) levels were undetectable in mns1 mns2 mns3 at normal condition and recovered at alkaline condition, which corroborate our N-glycopeptide profiling, from which N-glycopeptides related with IAA biosynthesis, amino acid conjugates hydrolysis, and response showed differential abundance between normal and alkaline conditions in mns1 mns2 mns3. Overall, our results linked the need for MNSs-mediated N-glycan processing in the ER and cis-Golgi with maintenance of auxin homeostasis and transport in Arabidopsis roots during the response to alkaline stress.

2.
J Environ Manage ; 301: 113768, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583282

RESUMO

Many studies have assessed the relative sensitivity of ecosystems to climate change, and even optimized climate states from long-term averages to infer short-term changes, but how ecosystem sensitivity and its relationships with climate variability vary over time remains elusive. By combining the vegetation sensitivity index (VSI) and a 15 year moving window, we analyzed interannual variability in spatiotemporal patterns of vegetation sensitivity to short-term climate variability and its correlations with climatic factors in China over the past three decades (1982-2015). We demonstrated that vegetation sensitivity shows high spatial heterogeneity, and varies with vegetation type and climate region. Generally, vegetation in the southwest and mountainous regions was more sensitive, especially coniferous forests and isolated shrubland patches. Comparatively, vegetation in dry regions was less sensitive to climate variability than in wetter climates. Due to frequent climate variability in the early 1990s, a large increase in the VSI was detected in 1996. Significant increases in the interannual variability of vegetation sensitivity were observed in greater than 23.7% of vegetated areas and decreases in only 4.2%. Solar radiation was the dominant climate driver of vegetation sensitivity, followed by temperature and precipitation. However, climate controls are not invariable across a range of climatic conditions, such as precipitation exerted an increasing influence on changes of vegetation sensitivity. Quantitative analyses of ecosystem sensitivity to climate variability such as ours are vital to identify which regions and vegetation are most vulnerable to future climate variability.


Assuntos
Mudança Climática , Ecossistema , China , Florestas , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...