Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790659

RESUMO

Hydrogen peroxide (H2O2) is a prevalent reactive oxygen species (ROS) found in cells and takes a central role in plant development and stress adaptation. The root apical meristem (RAM) has evolved strong plasticity to adapt to complex and changing environmental conditions. Recent advances have made great progress in explaining the mechanism of key factors, such as auxin, WUSCHEL-RELATED HOMEOBOX 5 (WOX5), PLETHORA (PLT), SHORTROOT (SHR), and SCARECROW (SCR), in the regulation of RAM activity maintenance. H2O2 functions as an emerging signaling molecule to control the quiescent center (QC) specification and stem cell niche (SCN) activity. Auxin is a key signal for the regulation of RAM maintenance, which largely depends on the formation of auxin regional gradients. H2O2 regulates the auxin gradients by the modulation of intercellular transport. H2O2 also modulates the expression of WOX5, PLTs, SHR, and SCR to maintain RAM activity. The present review is dedicated to summarizing the key factors in the regulation of RAM activity and discussing the signaling transduction of H2O2 in the maintenance of RAM activity. H2O2 is a significant signal for plant development and environmental adaptation.

2.
Front Plant Sci ; 14: 1302046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155857

RESUMO

Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.

3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902144

RESUMO

Drought is a major environmental threat that limits crop growth, development, and productivity worldwide. Improving drought resistance with genetic engineering methods is necessary to tackle global climate change. It is well known that NAC (NAM, ATAF and CUC) transcription factors play a critical role in coping with drought stress in plants. In this study, we identified an NAC transcription factor ZmNAC20, which regulates drought stress response in maize. ZmNAC20 expression was rapidly upregulated by drought and abscisic acid (ABA). Under drought conditions, the ZmNAC20-overexpressing plants had higher relative water content and survival rate than the wild-type maize inbred B104, suggesting that overexpression of ZmNAC20 improved drought resistance in maize. The detached leaves of ZmNAC20-overexpressing plants lost less water than those of wild-type B104 after dehydration. Overexpression of ZmNAC20 promoted stomatal closure in response to ABA. ZmNAC20 was localized in the nucleus and regulated the expression of many genes involved in drought stress response using RNA-Seq analysis. The study indicated that ZmNAC20 improved drought resistance by promoting stomatal closure and activating the expression of stress-responsible genes in maize. Our findings provide a valuable gene and new clues on improving crop drought resistance.


Assuntos
Fatores de Transcrição , Zea mays , Fatores de Transcrição/metabolismo , Zea mays/genética , Resistência à Seca , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas , Água/metabolismo , Ácido Abscísico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...