Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896514

RESUMO

Microseismic monitoring systems (MMS) have become increasingly crucial in detecting tremors in coal mining. Microseismic sensors (MS), integral components of MMS, profoundly influence positioning accuracy and energy calculations. Hence, calibrating these sensors holds immense importance. To bridge the research gap in MS calibration, this study conducted a systematic investigation. The main conclusions are as follows: based on calibration tests on 102 old MS using the CS18VLF vibration table, it became evident that certain long-used MS in coal mines exhibited significant deviations in frequency and amplitude measurements, indicating sensor failure. Three important calibration indexes, frequency deviation, amplitude deviation, and amplitude linearity are proposed to assess the performance of MS. By comparing the index of old and new MS, critical threshold values were established to evaluate sensor effectiveness. A well-functioning MS exhibits an absolute frequency deviation below 5%, an absolute amplitude deviation within 55%, and amplitude linearity surpassing 0.95. In normal operations, the frequency deviation of MS is significantly smaller than the amplitude deviation. Simplified waveform analysis has unveiled a linear connection between amplitude deviation and localization results. An analysis of the Gutenberg-Richter microseismic energy calculation formula found that the microseismic energy calculation is influenced by both the localization result and amplitude deviation, making it challenging to pinpoint the exact impact of amplitude deviation on microseismic energy. Reliable MS, as well as a robust MS, serve as the fundamental cornerstone for acquiring dependable microseismic data and are essential prerequisites for subsequent microseismic data mining. The insights and findings presented here provide valuable guidance for future MS calibration endeavors and ultimately can guarantee the dependability of microseismic data.

2.
Heliyon ; 9(7): e17638, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449194

RESUMO

Directional hydraulic fracturing (DHF) is more and more widely used in coal mines in China for hard roof and coal burst control. The key to this technology is to determine the crack initiation pressure that affected by the shape of the artificial notch and the stress state around the fracturing hole. Reasonable and simple formula for fracturing pressure calculation is essential since the fracturing pump used in coal mines is usually limited by the harsh conditions and hardly replaced once selected. Based on the superposition principle, the simplified 2D model of DHF was established as the elliptical hole with the internal pressure and solved by using the complex functions method. The analytical solution of tangential stress on the inner surface was obtained meanwhile the corresponding criterion of fracturing pressure can be set up. Considering the characteristics of DHF in coal mines, we further got a simplified formula that controlled by the ratio of major to minor axis of the ellipse-like notch, the ratio of the minimum to the maximum principal stress, as well as the tensile strength of the rock. The formula also gave a guide to the design of the notch that major diameter should be at least twice the minor diameter, and the optimal solution for the ratio is to 2~4 and recommended 4, which can resist the initiation pressure to a large extent affected by the in-situ stress. Once the pressure of the fracturing fluid is high enough to satisfy the equation cracks would arise at the tips of the notch along the major axis which belongs to mode Ⅰ crack and would grow unsteadily and rapidly. A PFC simulation model was used to verify the analysis, the results of which are very consistent with the theoretical solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...