Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(2): 1151-1161, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341743

RESUMO

Acoustic deterrent devices are used to guide aquatic animals from danger or toward migration paths. At sea, moderate sounds can potentially be used to deter fish to prevent injury or death due to acoustic overexposure. In sound exposure studies, acoustic features can be compared to improve deterrence efficacy. In this study, we played 200-1600 Hz pulse trains from a drifting vessel and investigated changes in pelagic fish abundance and behavior by utilizing echosounders and hydrophones mounted to a transect of bottom-moored frames. We monitored fish presence and tracked individual fish. This revealed no changes in fish abundance or behavior, including swimming speed and direction of individuals, in response to the sound exposure. We did find significant changes in swimming depth of individually tracked fish, but this could not be linked to the sound exposures. Overall, the results clearly show that pelagic fish did not flee from the current sound exposures, and we found no clear changes in behavior due to the sound exposure. We cannot rule out that different sounds at higher levels elicit a deterrence response; however, it may be that pelagic fish are just more likely to respond to sound with (short-lasting) changes in school formation.


Assuntos
Comportamento Animal , Som , Animais , Comportamento Animal/fisiologia , Peixes/fisiologia , Acústica
2.
Sci Total Environ ; 757: 143740, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33250236

RESUMO

While the importance of extreme conditions is recognised, patterns in species' abundances are often interpreted through average environmental conditions within their distributional range. For marine species with pelagic larvae, temperature and phytoplankton concentration are key variables. Along the south coast of South Africa, conspicuous spatial patterns in recruitment rates and the abundances of different mussel species exist, with focal areas characterized by large populations. We studied 15 years of sea surface temperature (SST) and chlorophyll-a (chl-a) satellite data, using spectral analyses to partition their temporal variability over ecologically relevant time periods, including seasonal (101 to 365 days) and intra-seasonal cycles (20 to 100 days). Adult cover and mussel recruitment were measured at 10 sites along the south coast and regression models showed that about 70% of the variability in recruitment and adult cover was explained by seasonal variability in chl-a, while mean annual chl-a and SST only explained 30% of the recruitment, with no significant effect for adult cover. SST and chl-a at two upwelling centres showed less predictable seasonal cycles during the second half of the study period with a significant cooling trend during austral autumn, coinciding with one of the mussel reproductive peaks. This likely reflects recent changes in the Agulhas Current, the world's largest western boundary current, which affects coastal ecosystems by driving upwelling. Similar mechanisms probably operate in other marine systems with the potential to affect the distribution patterns of key ecosystem engineers. We propose that variability in the characteristic timescales of environmental fluctuations can explain the spatial patterns of abundance of foundational species by affecting larval recruitment. This is especially important in a context of global and pervasive climate change, as shifts in the periodicity of environmental fluctuations appear to reflect large scale climatic teleconnections driven by anthropogenic forcing.


Assuntos
Ecossistema , Fitoplâncton , Animais , Clorofila A , Estações do Ano , África do Sul , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...