Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755207

RESUMO

A preliminary exploration of the physiology and morphology of the zebrafish embryo (ZFE) during the late-blastula and early-gastrula stages through its electrical properties was performed, applying the electrorotation (ROT) technique. This method, based on induced polarizability at the interfaces, was combined with an analytical spherical shell model to obtain the best fit of empirical data and the desired information, providing a means of understanding the role of different membranes. Suspended in two solutions of low conductivity, the major compartments of the ZFE were electrically characterized, considering morphological data from both observed records and data from the literature. Membrane integrity was also analyzed for dead embryos. The low permeability and relatively high permittivity obtained for the chorion probably reflected both its structural characteristics and external conditions. Reasonable values were derived for perivitelline fluid according to the influx of water that occurs after the fertilization of the oocyte. The so-called yolk membrane, which comprises three different and contiguous layers at the epiboly stage, showed atypical electrical values of the membrane, as did the yolk core with a relatively low permittivity. The internal morphological complexity of the embryo itself could be addressed in future studies by developing an accurate geometric model.

2.
Membranes (Basel) ; 13(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367796

RESUMO

The possible effects of ionizing radiation on four commercial membranes, which are typically used as electrolytes in fuel cells supplying energy to a huge variety of medical implantable devices, were studied. These devices could obtain energy from the biological environment through a glucose fuel cell, which could be a good candidate to replace conventional batteries as a power source. In these applications, materials with high radiation stability for the fuel cell elements would be disabled. The polymeric membrane is one of the key elements in fuel cells. Membrane swelling properties are very important because they affect the fuel cell's performance. For this reason, the swelling behaviors of various samples of each membrane irradiated with different doses were analyzed. Each sample was irradiated with a typical dose of a conventional radiotherapy treatment, and the regular conditions of the biological working environment were simulated. The target was to examine the possible effect of the received radiation on the membranes. The results show that the ionizing radiation influenced their swelling properties, as well as that dimensional changes were dependent on the existence of reinforcement, be it internal or external, in the membrane structure.

3.
Membranes (Basel) ; 12(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877868

RESUMO

The alcohol permeability of anion exchange membranes is a crucial property when they are used as a solid electrolyte in alkaline direct alcohol fuel cells and electrolyzers. The membrane is the core component to impede the fuel crossover and allows the ionic transport, and it strongly affects the fuel cell performance. The aim of this work is to compare different anion exchange membranes to be used as an electrolyte in alkaline direct alcohol fuels cells. The alcohol permeability of four commercial anion exchange membranes with different structure were analyzed in several hydro-organic media. The membranes were doped using different types of alkaline doping agents (LiOH, NaOH, and KOH) and different conditions to analyze the effect of the treatment on the membrane behavior. Methanol, ethanol, and 1-propanol were analyzed. The study was focused on the diffusive contribution to the alcohol crossover that affects the fuel cell performance. To this purpose, alcohol permeability was determined for various membrane systems. The results show that membrane alcohol permeability is affected by the doping conditions, depending on the effect on the type of membrane and alcohol nature. In general, heterogeneous membranes presented a positive correlation between alcohol permeability and doping capacity, with a lower effect for larger-size alcohols. A definite trend was not observed for homogeneous membranes.

4.
J Neurosci ; 33(39): 15518-32, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068819

RESUMO

To determine why some pathways but not others produce sizable local field potentials (LFPs) and how far from the source can these be recorded, complementary experimental analyses and realistic modeling of specific brain structures are required. In the present study, we combined multiple in vivo linear recordings in rats and a tridimensional finite element model of the dentate gyrus, a curved structure displaying abnormally large positive LFPs. We demonstrate that the polarized dendritic arbour of granule cells (GCs), combined with the curved layered configuration of the population promote the spatial clustering of GC currents in the interposed hilus and project them through the open side at a distance from cell domains. LFPs grow up to 20 times larger than observed in synaptic sites. The dominant positive polarity of hilar LFPs was only produced by the synchronous activation of GCs in both blades by either somatic inhibition or dendritic excitation. Moreover, the corresponding anatomical pathways must project to both blades of the dentate gyrus as even a mild decrease in the spatial synchronization resulted in a dramatic reduction in LFP power in distant sites, yet not in the GC domains. It is concluded that the activation of layered structures may establish sharply delimited spatial domains where synaptic currents from one or another input appear to be segregated according to the topology of afferent pathways and the cytoarchitectonic features of the target population. These also determine preferred directions for volume conduction in the brain, of relevance for interpretation of surface EEG recordings.


Assuntos
Giro Denteado/fisiologia , Modelos Neurológicos , Potenciais Sinápticos , Animais , Dendritos/fisiologia , Giro Denteado/citologia , Feminino , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011926, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867232

RESUMO

We use the Maxwell stress tensor to calculate the dielectrophoretic force and electrorotational torque acting on a realistic four-shelled model of the yeast Saccharomyces cerevisiae in a nonuniform rotating electric field generated by four coplanar square electrodes. The comparison of these results with numerical calculations of the dipolar and quadrupolar contributions obtained from an integral equation for the polarization charge density shows the effect of the quadrupole contribution in the proximity of the electrode plane. We also show that under typical experimental conditions the substitution of the multilayered cell by an equivalent cell with homogeneous permittivity underestimates the quadrupole contribution to the force and torque by 1 order of magnitude.


Assuntos
Biofísica/métodos , Saccharomyces cerevisiae/fisiologia , Algoritmos , Biotecnologia/métodos , Eletrodos , Campos Eletromagnéticos , Regulação Fúngica da Expressão Gênica , Modelos Estatísticos , Modelos Teóricos , Saccharomyces cerevisiae/metabolismo , Estresse Mecânico , Torque
6.
Biomicrofluidics ; 4(2)2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20697598

RESUMO

Progress in microelectrode-based technologies has facilitated the development of sophisticated methods for manipulating and separating cells, bacteria, and other bioparticles. For many of these various applications, the theoretical modeling of the electrical response of compartmentalized particles to an external field is important. In this paper we address the analysis of the interaction between cells immersed in rf fields. We use an integral formulation of the problem derived from a consideration of the charge densities induced at the interfaces of the particle compartments. The numerical solution by a boundary element technique allows characterization of their dielectric properties. Experimental validation of this theoretical model is obtained by investigating two effects: (1) The influence that dipolar "pearl chaining" has on the dielectrophoretic behavior of human T lymphocytes and (2) the frequency variation of the spin and orbital torques of approaching insulinoma beta-cells in a rotating field.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 1): 022901, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20365616

RESUMO

We predict the complex polarizability of a realistic model of a red blood cell (RBC), with an inhomogeneous dispersive and anisotropic membrane. In this model, the frequency-dependent complex electrical parameters of the individual cell layers are described by the Debye equation while the dielectric anisotropy of the cell membrane is taken into account by the different permittivities along directions normal and tangential to the membrane surface. The realistic shape of the RBC is described in terms of the Jacobi elliptic functions. To calculate the polarizability, we evoke the effective dipole moment method to determine the cell internal electric field distribution, employing an adaptive finite-element numerical approach. We have furthermore investigated the influence of the anisotropic membrane and dispersive electrical parameters of each individual cell layer on the total complex polarizability. Our findings suggest that the individual layer contribution depends on two factors: the volume of the layer and the associated induced electric field, which in turn is influenced by other layers of the cell. These results further show that the average polarizability spectra of the cell are significantly impacted by the anisotropy and associated dispersion of the cellular compartments.


Assuntos
Membrana Eritrocítica , Eritrócitos/citologia , Anisotropia , Eletricidade , Modelos Biológicos
8.
Bioelectrochemistry ; 77(2): 158-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19665436

RESUMO

The aim of this study is to analyze the electromagnetic energy stored in stomatocyte, erythrocyte and echinocyte cells exposed to a linearly polarized electromagnetic plane wave at 900, 1800 and 2450MHz radiofrequency signals. This analysis can provide a better understanding of the order of appearance of altered shapes of erythrocytes (RBC) in the stomatocyte-echinocyte transition under radiofrequency exposure in terms of the deposited electromagnetic energy. For this purpose we use a realistic geometrical cell model based on parametric equations that allow for continuous transformations between normal erythrocytes and three stomatocyte subclasses with different degree of invagination and also between normal erythrocytes and echinocytes with an arbitrary number of spicules. We use a finite element technique with adaptive meshing for calculating the electromagnetic energy deposited on the different regions of the cell models. It is found that the echinocyte cell stores the minimum electromagnetic energy and therefore from an energetic point of view it would be the most stable and preferred cell state when this electromagnetic energy is the predominant energy component.


Assuntos
Forma Celular/efeitos da radiação , Campos Eletromagnéticos , Deformação Eritrocítica/efeitos da radiação , Eritrócitos/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Ondas de Rádio , Forma Celular/fisiologia , Deformação Eritrocítica/fisiologia , Eritrócitos/citologia , Eritrócitos Anormais , Humanos , Potenciais da Membrana/fisiologia
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051905, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19113153

RESUMO

We show that within the dipole approximation the complex polarizability of shelled particles of arbitrary shape can be written as the volume of the particle times a weighted average of the electric field in the particle, with weights determined by the differences in permittivities between the shells and the external, possibly lossy media. To calculate the electric field we use an adaptive-mesh finite-element method which is very effective in handling the irregular domains, material inhomogeneities, and complex boundary conditions usually found in biophysical applications. After extensive tests with exactly solvable models, we apply the method to four types of hematic cells: platelets, T-lymphocytes, erythrocytes, and stomatocytes. Realistic shapes of erythrocytes and stomatocytes are generated by a parametrization in terms of Jacobi elliptic functions. Our results show, for example, that if the average polarizability is the main concern, a confocal ellipsoid may be used as a model for a normal erythrocyte, but not for a stomatocyte. A comparison with experimental electrorotation data shows quantitatively the effect of an accurate geometry in the derivation of electrical cell parameters from fittings of theoretical models to the experimental data.


Assuntos
Células Sanguíneas/citologia , Fenômenos Fisiológicos Sanguíneos , Polaridade Celular , Cor , Meios de Cultura , Eletricidade , Campos Eletromagnéticos , Eletrofisiologia , Eritrócitos/citologia , Humanos , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...