Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 1(1): 2, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23369602

RESUMO

BACKGROUND: "It's not what we do, it's the way that we do it". Never has this maxim been truer in proteomics than now. Mass Spectrometry-based proteomics/phosphoproteomics tools are critical to understand the structure and dynamics (spatial and temporal) of signalling that engages and migrates through the entire proteome. Approaches such as affinity purification followed by Mass Spectrometry (MS) have been used to elucidate relevant biological questions disease vs. health. Thousands of proteins interact via physical and chemical association. Moreover, certain proteins can covalently modify other proteins post-translationally. These post-translational modifications (PTMs) ultimately give rise to the emergent functions of cells in sequence, space and time. FINDINGS: Understanding the functions of phosphorylated proteins thus requires one to study proteomes as linked-systems rather than collections of individual protein molecules. Indeed, the interacting proteome or protein-network knowledge has recently received much attention, as network-systems (signalling pathways) are effective snapshots in time, of the proteome as a whole. MS approaches are clearly essential, in spite of the difficulties of some low abundance proteins for future clinical advances. CONCLUSION: Clinical proteomics-MS has come a long way in the past decade in terms of technology/platform development, protein chemistry, and together with bioinformatics and other OMICS tools to identify molecular signatures of diseases based on protein pathways and signalling cascades. Hence, there is great promise for disease diagnosis, prognosis, and prediction of therapeutic outcome on an individualized basis. However, and as a general rule, without correct study design, strategy and implementation of robust analytical methodologies, the efforts, efficiency and expectations to make biomarkers (especially phosphorylated kinases) a useful reality in the near future, can easily be hampered.

2.
J Clin Bioinforma ; 1: 26, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21967744

RESUMO

Reversible protein phosphorylation is one of the most important forms of cellular regulation. Thus, phosphoproteomic analysis of protein phosphorylation in cells is a powerful tool to evaluate cell functional status. The importance of protein kinase-regulated signal transduction pathways in human cancer has led to the development of drugs that inhibit protein kinases at the apex or intermediary levels of these pathways. Phosphoproteomic analysis of these signalling pathways will provide important insights for operation and connectivity of these pathways to facilitate identification of the best targets for cancer therapies. Enrichment of phosphorylated proteins or peptides from tissue or bodily fluid samples is required. The application of technologies such as phosphoenrichments, mass spectrometry (MS) coupled to bioinformatics tools is crucial for the identification and quantification of protein phosphorylation sites for advancing in such relevant clinical research. A combination of different phosphopeptide enrichments, quantitative techniques and bioinformatic tools is necessary to achieve good phospho-regulation data and good structural analysis of protein studies. The current and most useful proteomics and bioinformatics techniques will be explained with research examples. Our aim in this article is to be helpful for cancer research via detailing proteomics and bioinformatic tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...